IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v76y2017icp1485-1496.html
   My bibliography  Save this article

Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives

Author

Listed:
  • Hagos, Kiros
  • Zong, Jianpeng
  • Li, Dongxue
  • Liu, Chang
  • Lu, Xiaohua

Abstract

Globally, there is increasing awareness that renewable energy and energy efficiency are vital for both creating new economic opportunities and controlling the environmental pollution. AD technology is the biochemical process of biogas production which can change the complex organic materials into a clean and renewable source of energy. AcoD process is a reliable alternative option to resolve the disadvantages of single substrate digestion system related to substrate characteristics and system optimization. This paper reviewed the research progress and challenges of AcoD technology, and the contribution of different techniques in biogas production engineering. As the applicability and demand of the AcoD technology increases, the complexity of the system becomes increased, and the characterization of organic materials becomes volatile which requires advanced methods for investigation. Numerous publications have been noted that ADM1 model and its modified version becomes the most powerful tool to optimize the AcoD process of biogas production, and indicating that the disintegration and hydrolysis steps are the limiting factors of co-digestion process. Biochemical methane potential (BMP) test is promising method to determine the biodegradability and decomposition rate of organic materials. The addition of different environmentally friendly nanoparticles can improve the stability and performance of the AcoD system. The process optimization and improvement of biogas production still seek further investigations. Furthermore, using advanced simulation approaches and characterization methods of organic wastes can accelerate the transformation to industrializations, and realize the significant improvement of biogas production as a renewable source and economically feasible energy in developing countries, like China. Finally, the review reveals, designing and developing a framework, including various aspects to improve the biogas production is essential.

Suggested Citation

  • Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
  • Handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:1485-1496
    DOI: 10.1016/j.rser.2016.11.184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116309388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    2. Jurado, E. & Antonopoulou, G. & Lyberatos, G. & Gavala, H.N. & Skiadas, I.V., 2016. "Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking," Applied Energy, Elsevier, vol. 172(C), pages 190-198.
    3. Kwietniewska, Ewa & Tys, Jerzy, 2014. "Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 491-500.
    4. Abudi, Zaidun Naji & Hu, Zhiquan & Sun, Na & Xiao, Bo & Rajaa, Nagham & Liu, Cuixia & Guo, Dabin, 2016. "Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio," Energy, Elsevier, vol. 107(C), pages 131-140.
    5. Chen, Yu & Yang, Gaihe & Sweeney, Sandra & Feng, Yongzhong, 2010. "Household biogas use in rural China: A study of opportunities and constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 545-549, January.
    6. Yang, Yanli & Zhang, Peidong & Li, Guangquan, 2012. "Regional differentiation of biogas industrial development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6686-6693.
    7. Shah, Fayyaz Ali & Mahmood, Qaisar & Rashid, Naim & Pervez, Arshid & Raja, Iftikhar Ahmad & Shah, Mohammad Maroof, 2015. "Co-digestion, pretreatment and digester design for enhanced methanogenesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 627-642.
    8. Chen, Ling & Zhao, Lixin & Ren, Changshan & Wang, Fei, 2012. "The progress and prospects of rural biogas production in China," Energy Policy, Elsevier, vol. 51(C), pages 58-63.
    9. Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
    10. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    11. Lindmark, Johan & Thorin, Eva & Bel Fdhila, Rebei & Dahlquist, Erik, 2014. "Effects of mixing on the result of anaerobic digestion: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1030-1047.
    12. Lo, Kevin & Wang, Mark Y., 2013. "Energy conservation in China’s Twelfth Five-Year Plan period: Continuation or paradigm shift?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 499-507.
    13. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    14. Divya, D. & Gopinath, L.R. & Merlin Christy, P., 2015. "A review on current aspects and diverse prospects for enhancing biogas production in sustainable means," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 690-699.
    15. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1462-1476.
    16. Surendra, K.C. & Takara, Devin & Hashimoto, Andrew G. & Khanal, Samir Kumar, 2014. "Biogas as a sustainable energy source for developing countries: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 846-859.
    17. Li, Yebo & Park, Stephen Y. & Zhu, Jiying, 2011. "Solid-state anaerobic digestion for methane production from organic waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 821-826, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saha, Chayan Kumer & Nandi, Rajesh & Akter, Shammi & Hossain, Samira & Kabir, Kazi Bayzid & Kirtania, Kawnish & Islam, Md Tahmid & Guidugli, Laura & Reza, M. Toufiq & Alam, Md Monjurul, 2024. "Technical prospects and challenges of anaerobic co-digestion in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    3. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    4. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Suberu, Mohammed Yekini & Bashir, Nouruddeen & Mustafa, Mohd. Wazir, 2013. "Biogenic waste methane emissions and methane optimization for bioelectricity in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 643-654.
    6. Esfilar, Reza & Bagheri, Mehdi & Golestani, Behrooz, 2021. "Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    8. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    9. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    10. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    11. Jegede, A.O. & Zeeman, G. & Bruning, H., 2019. "Evaluation of liquid and solid phase mixing in Chinese dome digesters using residence time distribution (RTD) technique," Renewable Energy, Elsevier, vol. 143(C), pages 501-511.
    12. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    14. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.
    15. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    16. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.
    17. Zheng, Y.H. & Wei, J.G. & Li, J. & Feng, S.F. & Li, Z.F. & Jiang, G.M. & Lucas, M. & Wu, G.L. & Ning, T.Y., 2012. "Anaerobic fermentation technology increases biomass energy use efficiency in crop residue utilization and biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4588-4596.
    18. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria, 2013. "A review of prefabricated biogas digesters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 738-748.
    19. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:1485-1496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.