Critical evaluation of analytical methods for thermally activated building systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2019.109516
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Omar Isaac Asensio & Magali A. Delmas, 2017. "The effectiveness of US energy efficiency building labels," Nature Energy, Nature, vol. 2(4), pages 1-9, April.
- Radioti, G. & Sartor, K. & Charlier, R. & Dewallef, P. & Nguyen, F., 2017. "Effect of undisturbed ground temperature on the design of closed-loop geothermal systems: A case study in a semi-urban environment," Applied Energy, Elsevier, vol. 200(C), pages 89-105.
- Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
- Reilly, Aidan & Kinnane, Oliver, 2017. "The impact of thermal mass on building energy consumption," Applied Energy, Elsevier, vol. 198(C), pages 108-121.
- Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
- Aresti, Lazaros & Christodoulides, Paul & Florides, Georgios, 2018. "A review of the design aspects of ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 757-773.
- Lim, Jae-Han & Song, Jin-Hee & Song, Seung-Yeong, 2014. "Development of operational guidelines for thermally activated building system according to heating and cooling load characteristics," Applied Energy, Elsevier, vol. 126(C), pages 123-135.
- Epting, Jannis & Müller, Matthias H. & Genske, Dieter & Huggenberger, Peter, 2018. "Relating groundwater heat-potential to city-scale heat-demand: A theoretical consideration for urban groundwater resource management," Applied Energy, Elsevier, vol. 228(C), pages 1499-1505.
- Lehmann, B. & Dorer, V. & Gwerder, M. & Renggli, F. & Tödtli, J., 2011. "Thermally activated building systems (TABS): Energy efficiency as a function of control strategy, hydronic circuit topology and (cold) generation system," Applied Energy, Elsevier, vol. 88(1), pages 180-191, January.
- Xu, Xinhua & Yu, Jinghua & Wang, Shengwei & Wang, Jinbo, 2014. "Research and application of active hollow core slabs in building systems for utilizing low energy sources," Applied Energy, Elsevier, vol. 116(C), pages 424-435.
- Hafner, Rebecca J. & Elmes, David & Read, Daniel, 2019. "Promoting behavioural change to reduce thermal energy demand in households: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 205-214.
- Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Energy storage and heat extraction – From thermally activated building systems (TABS) to thermally homeostatic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 677-685.
- Gwerder, M. & Tödtli, J. & Lehmann, B. & Dorer, V. & Güntensperger, W. & Renggli, F., 2009. "Control of thermally activated building systems (TABS) in intermittent operation with pulse width modulation," Applied Energy, Elsevier, vol. 86(9), pages 1606-1616, September.
- Raftery, Paul & Lee, Kwang Ho & Webster, Tom & Bauman, Fred, 2012. "Performance analysis of an integrated UFAD and radiant hydronic slab system," Applied Energy, Elsevier, vol. 90(1), pages 250-257.
- Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
- Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2013. "Modeling of TABS-based thermally manageable buildings in Simulink," Applied Energy, Elsevier, vol. 104(C), pages 791-800.
- Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.
- Gwerder, M. & Lehmann, B. & Tödtli, J. & Dorer, V. & Renggli, F., 2008. "Control of thermally-activated building systems (TABS)," Applied Energy, Elsevier, vol. 85(7), pages 565-581, July.
- Verbeke, Stijn & Audenaert, Amaryllis, 2018. "Thermal inertia in buildings: A review of impacts across climate and building use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2300-2318.
- Nan Zhou & Nina Khanna & Wei Feng & Jing Ke & Mark Levine, 2018. "Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050," Nature Energy, Nature, vol. 3(11), pages 978-984, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- He, Xianya & Huang, Jingzhi & Liu, Zekun & Lin, Jian & Jing, Rui & Zhao, Yingru, 2023. "Topology optimization of thermally activated building system in high-rise building," Energy, Elsevier, vol. 284(C).
- Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Heidenthaler, Daniel & Leeb, Markus & Schnabel, Thomas & Huber, Hermann, 2021. "Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach," Energy, Elsevier, vol. 233(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Schmelas, Martin & Feldmann, Thomas & Bollin, Elmar, 2017. "Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study," Applied Energy, Elsevier, vol. 199(C), pages 294-309.
- Lim, Jae-Han & Song, Jin-Hee & Song, Seung-Yeong, 2014. "Development of operational guidelines for thermally activated building system according to heating and cooling load characteristics," Applied Energy, Elsevier, vol. 126(C), pages 123-135.
- Wang, Lin-Shu & Ma, Peizheng, 2016. "The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings," Applied Energy, Elsevier, vol. 162(C), pages 183-196.
- Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Jia, Hongyuan & Pang, Xiufeng & Haves, Philip, 2018. "Experimentally-determined characteristics of radiant systems for office buildings," Applied Energy, Elsevier, vol. 221(C), pages 41-54.
- Heidenthaler, Daniel & Leeb, Markus & Schnabel, Thomas & Huber, Hermann, 2021. "Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach," Energy, Elsevier, vol. 233(C).
- Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2014. "Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower," Applied Energy, Elsevier, vol. 127(C), pages 172-181.
- Woong June Chung & Sang Hoon Park & Myoung Souk Yeo & Kwang Woo Kim, 2017. "Control of Thermally Activated Building System Considering Zone Load Characteristics," Sustainability, MDPI, vol. 9(4), pages 1-14, April.
- Yu, Tao & Heiselberg, Per & Lei, Bo & Zhang, Chen & Pomianowski, Michal & Jensen, Rasmus, 2016. "Experimental study on the dynamic performance of a novel system combining natural ventilation with diffuse ceiling inlet and TABS," Applied Energy, Elsevier, vol. 169(C), pages 218-229.
- Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude," Applied Energy, Elsevier, vol. 146(C), pages 84-91.
- Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Energy storage and heat extraction – From thermally activated building systems (TABS) to thermally homeostatic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 677-685.
- Ibrahim, Mohamad & Wurtz, Etienne & Biwole, Pascal Henry & Achard, Patrick, 2014. "Transferring the south solar energy to the north facade through embedded water pipes," Energy, Elsevier, vol. 78(C), pages 834-845.
- He, Xianya & Huang, Jingzhi & Liu, Zekun & Lin, Jian & Jing, Rui & Zhao, Yingru, 2023. "Topology optimization of thermally activated building system in high-rise building," Energy, Elsevier, vol. 284(C).
- Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2013. "Modeling of TABS-based thermally manageable buildings in Simulink," Applied Energy, Elsevier, vol. 104(C), pages 791-800.
- Romaní, Joaquim & Cabeza, Luisa F. & de Gracia, Alvaro, 2018. "Development and experimental validation of a transient 2D numeric model for radiant walls," Renewable Energy, Elsevier, vol. 115(C), pages 859-870.
- Krzaczek, M. & Florczuk, J. & Tejchman, J., 2019. "Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings," Applied Energy, Elsevier, vol. 254(C).
- María M. Villar-Ramos & Iván Hernández-Pérez & Karla M. Aguilar-Castro & Ivett Zavala-Guillén & Edgar V. Macias-Melo & Irving Hernández-López & Juan Serrano-Arellano, 2022. "A Review of Thermally Activated Building Systems (TABS) as an Alternative for Improving the Indoor Environment of Buildings," Energies, MDPI, vol. 15(17), pages 1-31, August.
- Shan, Kui & Wang, Jiayuan & Hu, Maomao & Gao, Dian-ce, 2019. "A model-based control strategy to recover cooling energy from thermal mass in commercial buildings," Energy, Elsevier, vol. 172(C), pages 958-967.
- Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
- Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
More about this item
Keywords
Building energy; TABS; Radiant floor; Heat conduction; Thermal mass; Numerical simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:117:y:2020:i:c:s1364032119307245. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.