IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp1499-1505.html
   My bibliography  Save this article

Relating groundwater heat-potential to city-scale heat-demand: A theoretical consideration for urban groundwater resource management

Author

Listed:
  • Epting, Jannis
  • Müller, Matthias H.
  • Genske, Dieter
  • Huggenberger, Peter

Abstract

To sustainably plan the use of subsurface resources, a discussion about thermal management is needed, as well as a more coordinated and efficient thermal use of subsurface resources.

Suggested Citation

  • Epting, Jannis & Müller, Matthias H. & Genske, Dieter & Huggenberger, Peter, 2018. "Relating groundwater heat-potential to city-scale heat-demand: A theoretical consideration for urban groundwater resource management," Applied Energy, Elsevier, vol. 228(C), pages 1499-1505.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1499-1505
    DOI: 10.1016/j.apenergy.2018.06.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918310134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    2. Herbert, Alan & Arthur, Simon & Chillingworth, Grace, 2013. "Thermal modelling of large scale exploitation of ground source energy in urban aquifers as a resource management tool," Applied Energy, Elsevier, vol. 109(C), pages 94-103.
    3. Ondreka, Joris & Rüsgen, Maike Inga & Stober, Ingrid & Czurda, Kurt, 2007. "GIS-supported mapping of shallow geothermal potential of representative areas in south-western Germany—Possibilities and limitations," Renewable Energy, Elsevier, vol. 32(13), pages 2186-2200.
    4. Schiel, Kerry & Baume, Olivier & Caruso, Geoffrey & Leopold, Ulrich, 2016. "GIS-based modelling of shallow geothermal energy potential for CO2 emission mitigation in urban areas," Renewable Energy, Elsevier, vol. 86(C), pages 1023-1036.
    5. Bertermann, D. & Klug, H. & Morper-Busch, L., 2015. "A pan-European planning basis for estimating the very shallow geothermal energy potentials," Renewable Energy, Elsevier, vol. 75(C), pages 335-347.
    6. John W. Lund, 2010. "Direct Utilization of Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-29, August.
    7. Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
    8. García-Gil, Alejandro & Vázquez-Suñe, Enric & Alcaraz, Maria M. & Juan, Alejandro Serrano & Sánchez-Navarro, José Ángel & Montlleó, Marc & Rodríguez, Gustavo & Lao, José, 2015. "GIS-supported mapping of low-temperature geothermal potential taking groundwater flow into account," Renewable Energy, Elsevier, vol. 77(C), pages 268-278.
    9. Casasso, Alessandro & Sethi, Rajandrea, 2017. "Assessment and mapping of the shallow geothermal potential in the province of Cuneo (Piedmont, NW Italy)," Renewable Energy, Elsevier, vol. 102(PB), pages 306-315.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Modrzyński & Robert Karaszewski, 2022. "Urban Energy Management—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    2. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    3. Makasis, Nikolas & Gu, Xiaoying & Kreitmair, Monika J. & Narsilio, Guillermo A. & Choudhary, Ruchi, 2023. "Geothermal pavements: A city-scale investigation on providing sustainable heating for the city of Cardiff, UK," Renewable Energy, Elsevier, vol. 218(C).
    4. Tissen, Carolin & Menberg, Kathrin & Benz, Susanne A. & Bayer, Peter & Steiner, Cornelia & Götzl, Gregor & Blum, Philipp, 2021. "Identifying key locations for shallow geothermal use in Vienna," Renewable Energy, Elsevier, vol. 167(C), pages 1-19.
    5. Wu, Wentao & Zhang, Wei & Benner, Jingru & Malkawi, Ali, 2020. "Critical evaluation of analytical methods for thermally activated building systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    6. Fleuchaus, Paul & Schüppler, Simon & Godschalk, Bas & Bakema, Guido & Blum, Philipp, 2020. "Performance analysis of Aquifer Thermal Energy Storage (ATES)," Renewable Energy, Elsevier, vol. 146(C), pages 1536-1548.
    7. Ciriaco, Anthony E. & Zarrouk, Sadiq J. & Zakeri, Golbon, 2020. "Geothermal resource and reserve assessment methodology: Overview, analysis and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Vigneshwaran, K. & Sodhi, Gurpreet Singh & Muthukumar, P. & Guha, Anurag & Senthilmurugan, S., 2019. "Experimental and numerical investigations on high temperature cast steel based sensible heat storage system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Epting, Jannis & Böttcher, Fabian & Mueller, Matthias H. & García-Gil, Alejandro & Zosseder, Kai & Huggenberger, Peter, 2020. "City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials," Renewable Energy, Elsevier, vol. 147(P1), pages 751-763.
    10. Halilovic, Smajil & Böttcher, Fabian & Zosseder, Kai & Hamacher, Thomas, 2023. "Optimizing the spatial arrangement of groundwater heat pumps and their well locations," Renewable Energy, Elsevier, vol. 217(C).
    11. Susanne A. Benz & Kathrin Menberg & Peter Bayer & Barret L. Kurylyk, 2022. "Shallow subsurface heat recycling is a sustainable global space heating alternative," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Gaudard, Adrien & Wüest, Alfred & Schmid, Martin, 2019. "Using lakes and rivers for extraction and disposal of heat: Estimate of regional potentials," Renewable Energy, Elsevier, vol. 134(C), pages 330-342.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alcaraz, Mar & García-Gil, Alejandro & Vázquez-Suñé, Enric & Velasco, Violeta, 2016. "Use rights markets for shallow geothermal energy management," Applied Energy, Elsevier, vol. 172(C), pages 34-46.
    2. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    3. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    4. Korhonen, Kimmo & Markó, Ábel & Bischoff, Alan & Szijártó, Márk & Mádl-Szőnyi, Judit, 2023. "Infinite borehole field model—a new approach to estimate the shallow geothermal potential of urban areas applied to central Budapest, Hungary," Renewable Energy, Elsevier, vol. 208(C), pages 263-274.
    5. Epting, Jannis & Böttcher, Fabian & Mueller, Matthias H. & García-Gil, Alejandro & Zosseder, Kai & Huggenberger, Peter, 2020. "City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials," Renewable Energy, Elsevier, vol. 147(P1), pages 751-763.
    6. Böttcher, Fabian & Casasso, Alessandro & Götzl, Gregor & Zosseder, Kai, 2019. "TAP - Thermal aquifer Potential: A quantitative method to assess the spatial potential for the thermal use of groundwater," Renewable Energy, Elsevier, vol. 142(C), pages 85-95.
    7. Luo, Jin & Wang, Haiqi & Zhang, Haiyong & Yan, Zezhou, 2021. "A geospatial assessment of the installation potential of shallow geothermal systems in a graben basin," Renewable Energy, Elsevier, vol. 165(P1), pages 553-564.
    8. Walch, Alina & Mohajeri, Nahid & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2021. "Quantifying the technical geothermal potential from shallow borehole heat exchangers at regional scale," Renewable Energy, Elsevier, vol. 165(P1), pages 369-380.
    9. Luo, Jin & Luo, Zequan & Xie, Jihai & Xia, Dongsheng & Huang, Wei & Shao, Haibin & Xiang, Wei & Rohn, Joachim, 2018. "Investigation of shallow geothermal potentials for different types of ground source heat pump systems (GSHP) of Wuhan city in China," Renewable Energy, Elsevier, vol. 118(C), pages 230-244.
    10. García-Gil, Alejandro & Goetzl, Gregor & Kłonowski, Maciej R. & Borovic, Staša & Boon, David P. & Abesser, Corinna & Janza, Mitja & Herms, Ignasi & Petitclerc, Estelle & Erlström, Mikael & Holecek, Ja, 2020. "Governance of shallow geothermal energy resources," Energy Policy, Elsevier, vol. 138(C).
    11. Stegnar, Gašper & Staničić, D. & Česen, M. & Čižman, J. & Pestotnik, S. & Prestor, J. & Urbančič, A. & Merše, S., 2019. "A framework for assessing the technical and economic potential of shallow geothermal energy in individual and district heating systems: A case study of Slovenia," Energy, Elsevier, vol. 180(C), pages 405-420.
    12. Ramos-Escudero, Adela & García-Cascales, M. Socorro & Cuevas, Jose M. & Sanner, Burkhard & Urchueguía, Javier F., 2021. "Spatial analysis of indicators affecting the exploitation of shallow geothermal energy at European scale," Renewable Energy, Elsevier, vol. 167(C), pages 266-281.
    13. Muñoz, Mauricio & Garat, Pablo & Flores-Aqueveque, Valentina & Vargas, Gabriel & Rebolledo, Sofía & Sepúlveda, Sergio & Daniele, Linda & Morata, Diego & Parada, Miguel Ángel, 2015. "Estimating low-enthalpy geothermal energy potential for district heating in Santiago basin–Chile (33.5 °S)," Renewable Energy, Elsevier, vol. 76(C), pages 186-195.
    14. García-Gil, Alejandro & Muela Maya, Sylvia & Garrido Schneider, Eduardo & Mejías Moreno, Miguel & Vázquez-Suñé, Enric & Marazuela, Miguel Ángel & Mateo Lázaro, Jesús & Sánchez-Navarro, José Ángel, 2019. "Sustainability indicator for the prevention of potential thermal interferences between groundwater heat pump systems in urban aquifers," Renewable Energy, Elsevier, vol. 134(C), pages 14-24.
    15. Tissen, Carolin & Menberg, Kathrin & Benz, Susanne A. & Bayer, Peter & Steiner, Cornelia & Götzl, Gregor & Blum, Philipp, 2021. "Identifying key locations for shallow geothermal use in Vienna," Renewable Energy, Elsevier, vol. 167(C), pages 1-19.
    16. Galgaro, A. & Di Sipio, E. & Carrera, A. & Dalla Santa, G. & Escudero, A. Ramos & Cuevas, J.M. & Pasquali, R. & Sanner, B. & Bernardi, A., 2022. "European and municipal scale drillability maps: A tool to identify the most suitable techniques to install borehole heat exchangers (BHE) probes," Renewable Energy, Elsevier, vol. 192(C), pages 188-199.
    17. Luo, Jin & Qiao, Yu & Xiang, Wei & Rohn, Joachim, 2020. "Measurements and analysis of the thermal properties of a sedimentary succession in Yangtze plate in China," Renewable Energy, Elsevier, vol. 147(P2), pages 2708-2723.
    18. García-Gil, Alejandro & Vázquez-Suñe, Enric & Alcaraz, Maria M. & Juan, Alejandro Serrano & Sánchez-Navarro, José Ángel & Montlleó, Marc & Rodríguez, Gustavo & Lao, José, 2015. "GIS-supported mapping of low-temperature geothermal potential taking groundwater flow into account," Renewable Energy, Elsevier, vol. 77(C), pages 268-278.
    19. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2017. "Thermal performance of a solar assisted horizontal ground heat exchanger," Energy, Elsevier, vol. 140(P1), pages 1216-1227.
    20. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1499-1505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.