IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v78y2014icp834-845.html
   My bibliography  Save this article

Transferring the south solar energy to the north facade through embedded water pipes

Author

Listed:
  • Ibrahim, Mohamad
  • Wurtz, Etienne
  • Biwole, Pascal Henry
  • Achard, Patrick

Abstract

In the cold sunny winter days, when the south wall is well insulated, a significant amount of solar energy falling on this facade is not transferred to the inside. In this study, a novel closed wall-loop system is proposed to capture this wasted energy available during non-cloudy winter days and transfer it to the cooler north facade through water pipes embedded in an exterior aerogel-based insulating coating. The coating's projection technique through spraying or plastering allows the easy implementation of this system. We present the proposed system with all the mathematical equations and numerical model. This model is then validated against experimental data found in the literature. To test its performance on a full-scale house, this MATLAB numerical model is coupled to the whole building energy simulation program EnergyPlus through co-simulation. Results show that the reductions in the annual heating load for the house adopting this system relative to the one without it are between 28 and 43% for new houses and 15–20% for old houses for Mediterranean climate. For other climates, the reductions vary between 6% and 26%. The heat losses through the north facade are reduced by about 60–88% in the Mediterranean climate and about 20–50% in the other climates.

Suggested Citation

  • Ibrahim, Mohamad & Wurtz, Etienne & Biwole, Pascal Henry & Achard, Patrick, 2014. "Transferring the south solar energy to the north facade through embedded water pipes," Energy, Elsevier, vol. 78(C), pages 834-845.
  • Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:834-845
    DOI: 10.1016/j.energy.2014.10.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214012286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.10.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    2. Ibrahim, Mohamad & Biwole, Pascal Henry & Wurtz, Etienne & Achard, Patrick, 2014. "Limiting windows offset thermal bridge losses using a new insulating coating," Applied Energy, Elsevier, vol. 123(C), pages 220-231.
    3. Nam, Yujin & Chae, Ho-Byung, 2014. "Numerical simulation for the optimum design of ground source heat pump system using building foundation as horizontal heat exchanger," Energy, Elsevier, vol. 73(C), pages 933-942.
    4. Lehmann, B. & Dorer, V. & Gwerder, M. & Renggli, F. & Tödtli, J., 2011. "Thermally activated building systems (TABS): Energy efficiency as a function of control strategy, hydronic circuit topology and (cold) generation system," Applied Energy, Elsevier, vol. 88(1), pages 180-191, January.
    5. Xu, Xinhua & Yu, Jinghua & Wang, Shengwei & Wang, Jinbo, 2014. "Research and application of active hollow core slabs in building systems for utilizing low energy sources," Applied Energy, Elsevier, vol. 116(C), pages 424-435.
    6. Russell, M. B. & Surendran, P. N., 2001. "Influence of active heat sinks on fabric thermal storage in building mass," Applied Energy, Elsevier, vol. 70(1), pages 17-33, September.
    7. Bojic, Milorad & Nikolic, Novak & Nikolic, Danijela & Skerlic, Jasmina & Miletic, Ivan, 2011. "Toward a positive-net-energy residential building in Serbian conditions," Applied Energy, Elsevier, vol. 88(7), pages 2407-2419, July.
    8. Raftery, Paul & Lee, Kwang Ho & Webster, Tom & Bauman, Fred, 2012. "Performance analysis of an integrated UFAD and radiant hydronic slab system," Applied Energy, Elsevier, vol. 90(1), pages 250-257.
    9. Fan, Rui & Jiang, Yiqiang & Yao, Yang & Shiming, Deng & Ma, Zuiliang, 2007. "A study on the performance of a geothermal heat exchanger under coupled heat conduction and groundwater advection," Energy, Elsevier, vol. 32(11), pages 2199-2209.
    10. Sethi, V.P. & Sharma, S.K., 2007. "Greenhouse heating and cooling using aquifer water," Energy, Elsevier, vol. 32(8), pages 1414-1421.
    11. Kalz, Doreen E. & Wienold, Jan & Fischer, Martin & Cali, Davide, 2010. "Novel heating and cooling concept employing rainwater cisterns and thermo-active building systems for a residential building," Applied Energy, Elsevier, vol. 87(2), pages 650-660, February.
    12. Zhou, Xuezhi & Gao, Qing & Chen, Xiangliang & Yu, Ming & Zhao, Xiaowen, 2013. "Numerically simulating the thermal behaviors in groundwater wells of groundwater heat pump," Energy, Elsevier, vol. 61(C), pages 240-247.
    13. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2013. "Modeling of TABS-based thermally manageable buildings in Simulink," Applied Energy, Elsevier, vol. 104(C), pages 791-800.
    14. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    15. Yang, C.M. & Chen, C.C. & Chen, S.L., 2013. "Energy-efficient air conditioning system with combination of radiant cooling and periodic total heat exchanger," Energy, Elsevier, vol. 59(C), pages 467-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Wenjie & Chow, Tin-Tai, 2020. "Experimental and numerical analysis of solar-absorbing metallic facade panel with embedded heat-pipe-array," Applied Energy, Elsevier, vol. 265(C).
    2. Chen, Zhaoxin & Li, Jiaxuan & Tang, Guoqiang & Zhang, Jiahao & Zhang, Donghai & Gao, Penghui, 2024. "High-efficiency heating and cooling technology with embedded pipes in buildings and underground structures: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Niu, Fuxin & Yu, Yuebin, 2016. "Location and optimization analysis of capillary tube network embedded in active tuning building wall," Energy, Elsevier, vol. 97(C), pages 36-45.
    4. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Zhao, Hengxin & Wu, Yifan & Sun, Hongli & Lin, Borong & Zhong, Minlin & Jiang, Guochen & Wu, Shuangdui, 2023. "A novel building envelope combined with jumping-droplet thermal diode: From theory to practice," Renewable Energy, Elsevier, vol. 218(C).
    6. Emmanouil Katsigiannis & Petros Antonios Gerogiannis & Ioannis Atsonios & Ioannis Mandilaras & Maria Founti, 2023. "Design and Parametric Analysis of a Solar-Driven Façade Active Layer System for Dynamic Insulation and Radiant Heating: A Renovation Solution for Residential Buildings," Energies, MDPI, vol. 16(13), pages 1-18, July.
    7. Shen, Jingchun & Zhang, Xingxing & Yang, Tong & Tang, Llewellyn & Cheshmehzangi, Ali & Wu, Yupeng & Huang, Guiqin & Zhong, Dan & Xu, Peng & Liu, Shengchun, 2016. "Characteristic study of a novel compact Solar Thermal Facade (STF) with internally extruded pin–fin flow channel for building integration," Applied Energy, Elsevier, vol. 168(C), pages 48-64.
    8. Zhang, Chong & Gang, Wenjie & Xu, Xinhua & Li, Liao & Wang, Jinbo, 2019. "Modelling, experimental test, and design of an active air permeable wall by utilizing the low-grade exhaust air," Applied Energy, Elsevier, vol. 240(C), pages 730-743.
    9. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    10. Ibrahim, Mohamad & Biwole, Pascal Henry & Achard, Patrick & Wurtz, Etienne & Ansart, Guillaume, 2015. "Building envelope with a new aerogel-based insulating rendering: Experimental and numerical study, cost analysis, and thickness optimization," Applied Energy, Elsevier, vol. 159(C), pages 490-501.
    11. Omrany, Hossein & Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Raahemifar, Kaamran & Tookey, John, 2016. "Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1252-1269.
    12. Xiaohang Shen & Nianping Li & Jiao Lu & Yongga A, 2020. "Heating Performance of Solar Building Integrated Wall under Natural Circulation," Energies, MDPI, vol. 13(23), pages 1-22, November.
    13. Tang, G.H. & Bi, C. & Zhao, Y. & Tao, W.Q., 2015. "Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook," Energy, Elsevier, vol. 90(P1), pages 701-721.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xinhua & Yu, Jinghua & Wang, Shengwei & Wang, Jinbo, 2014. "Research and application of active hollow core slabs in building systems for utilizing low energy sources," Applied Energy, Elsevier, vol. 116(C), pages 424-435.
    2. Schmelas, Martin & Feldmann, Thomas & Bollin, Elmar, 2017. "Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study," Applied Energy, Elsevier, vol. 199(C), pages 294-309.
    3. Lim, Jae-Han & Song, Jin-Hee & Song, Seung-Yeong, 2014. "Development of operational guidelines for thermally activated building system according to heating and cooling load characteristics," Applied Energy, Elsevier, vol. 126(C), pages 123-135.
    4. Wu, Wentao & Zhang, Wei & Benner, Jingru & Malkawi, Ali, 2020. "Critical evaluation of analytical methods for thermally activated building systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    5. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    6. Heidenthaler, Daniel & Leeb, Markus & Schnabel, Thomas & Huber, Hermann, 2021. "Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach," Energy, Elsevier, vol. 233(C).
    7. Ibrahim, Mohamad & Biwole, Pascal Henry & Achard, Patrick & Wurtz, Etienne & Ansart, Guillaume, 2015. "Building envelope with a new aerogel-based insulating rendering: Experimental and numerical study, cost analysis, and thickness optimization," Applied Energy, Elsevier, vol. 159(C), pages 490-501.
    8. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Energy storage and heat extraction – From thermally activated building systems (TABS) to thermally homeostatic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 677-685.
    9. Wang, Lin-Shu & Ma, Peizheng, 2016. "The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings," Applied Energy, Elsevier, vol. 162(C), pages 183-196.
    10. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    11. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2014. "Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower," Applied Energy, Elsevier, vol. 127(C), pages 172-181.
    12. Alcaraz, Mar & García-Gil, Alejandro & Vázquez-Suñé, Enric & Velasco, Violeta, 2016. "Use rights markets for shallow geothermal energy management," Applied Energy, Elsevier, vol. 172(C), pages 34-46.
    13. Bojić, Milorad & Cvetković, Dragan & Bojić, Ljubiša, 2015. "Decreasing energy use and influence to environment by radiant panel heating using different energy sources," Applied Energy, Elsevier, vol. 138(C), pages 404-413.
    14. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    15. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude," Applied Energy, Elsevier, vol. 146(C), pages 84-91.
    16. Romaní, Joaquim & Cabeza, Luisa F. & de Gracia, Alvaro, 2018. "Development and experimental validation of a transient 2D numeric model for radiant walls," Renewable Energy, Elsevier, vol. 115(C), pages 859-870.
    17. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    18. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    19. Joudi, Ali & Svedung, Harald & Bales, Chris & Rönnelid, Mats, 2011. "Highly reflective coatings for interior and exterior steel cladding and the energy efficiency of buildings," Applied Energy, Elsevier, vol. 88(12), pages 4655-4666.
    20. Capozza, Antonio & De Carli, Michele & Zarrella, Angelo, 2013. "Investigations on the influence of aquifers on the ground temperature in ground-source heat pump operation," Applied Energy, Elsevier, vol. 107(C), pages 350-363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:834-845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.