IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v90y2012i1p250-257.html
   My bibliography  Save this article

Performance analysis of an integrated UFAD and radiant hydronic slab system

Author

Listed:
  • Raftery, Paul
  • Lee, Kwang Ho
  • Webster, Tom
  • Bauman, Fred

Abstract

In this paper, an EnergyPlus model was used to simulate the operation of a novel integrated HVAC system. This system combines an underfloor air distribution system with a cooled radiant ceiling slab. A cooling tower supplies water to pre-cool the structural slabs during the night and early morning period. The paper compares the performance of this system to both a typical overhead system and a typical UFAD system in the cooling season for the Sacramento, California climate. When compared to the overhead system, the integrated UFAD/Radiant system shows a 22–23% reduction in total energy consumption during the peak cooling months (June to August) and a 31% reduction in peak hourly electricity demand. When compared to the UFAD system, these reductions are 21–22% and 24% respectively. An investigation of the simulation results showed that the integrated UFAD/Radiant system also improves occupant thermal comfort and reduces thermal decay issues in the underfloor plenum.

Suggested Citation

  • Raftery, Paul & Lee, Kwang Ho & Webster, Tom & Bauman, Fred, 2012. "Performance analysis of an integrated UFAD and radiant hydronic slab system," Applied Energy, Elsevier, vol. 90(1), pages 250-257.
  • Handle: RePEc:eee:appene:v:90:y:2012:i:1:p:250-257
    DOI: 10.1016/j.apenergy.2011.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911001139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schmelas, Martin & Feldmann, Thomas & Bollin, Elmar, 2017. "Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study," Applied Energy, Elsevier, vol. 199(C), pages 294-309.
    2. Bojić, Milorad & Cvetković, Dragan & Bojić, Ljubiša, 2015. "Decreasing energy use and influence to environment by radiant panel heating using different energy sources," Applied Energy, Elsevier, vol. 138(C), pages 404-413.
    3. Heidenthaler, Daniel & Leeb, Markus & Schnabel, Thomas & Huber, Hermann, 2021. "Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach," Energy, Elsevier, vol. 233(C).
    4. Ibrahim, Mohamad & Wurtz, Etienne & Biwole, Pascal Henry & Achard, Patrick, 2014. "Transferring the south solar energy to the north facade through embedded water pipes," Energy, Elsevier, vol. 78(C), pages 834-845.
    5. Lim, Jae-Han & Song, Jin-Hee & Song, Seung-Yeong, 2014. "Development of operational guidelines for thermally activated building system according to heating and cooling load characteristics," Applied Energy, Elsevier, vol. 126(C), pages 123-135.
    6. Wu, Wentao & Zhang, Wei & Benner, Jingru & Malkawi, Ali, 2020. "Critical evaluation of analytical methods for thermally activated building systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:90:y:2012:i:1:p:250-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.