IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221013864.html
   My bibliography  Save this article

Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach

Author

Listed:
  • Heidenthaler, Daniel
  • Leeb, Markus
  • Schnabel, Thomas
  • Huber, Hermann

Abstract

Thermally activated building systems (TABS) represent a practicable and energy efficient possibility for heating of buildings. Whereas TABS in concrete structures are well-established, wood-based materials are barely considered. State-of-the-art simulations were conducted for various ceiling structures based on different wood-based materials and concrete regarding the thermal performance. Steady-state simulations demonstrate that TABS in wooden structures are fundamentally functional and able to achieve an appropriate heat flux of 26 W/m² while meeting the comfort requirement of maximum 4 K temperature difference between room air temperature and surface temperature, although considerably higher fluid temperatures are necessary compared to TABS in concrete. The results of transient simulations show that heat storage capacities of up to 1065 Wh/m² can be achieved within the wooden variants compared to 696 Wh/m² for concrete on condition of an equivalent heat flux underneath the ceiling. Furthermore, a combination of different wooden layers within the structure can contribute to both, a comparatively high energy storage potential and a high heat flux density simultaneously, compromising the fact that a higher heat flux density is often accompanied by a lower thermal storage capacity in the simulated models and vice versa. These findings could be used to develop an element of timber as energy storage system.

Suggested Citation

  • Heidenthaler, Daniel & Leeb, Markus & Schnabel, Thomas & Huber, Hermann, 2021. "Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013864
    DOI: 10.1016/j.energy.2021.121138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lim, Jae-Han & Song, Jin-Hee & Song, Seung-Yeong, 2014. "Development of operational guidelines for thermally activated building system according to heating and cooling load characteristics," Applied Energy, Elsevier, vol. 126(C), pages 123-135.
    2. Le Dréau, J. & Heiselberg, P., 2016. "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, Elsevier, vol. 111(C), pages 991-1002.
    3. Hurtado, L.A. & Rhodes, J.D. & Nguyen, P.H. & Kamphuis, I.G. & Webber, M.E., 2017. "Quantifying demand flexibility based on structural thermal storage and comfort management of non-residential buildings: A comparison between hot and cold climate zones," Applied Energy, Elsevier, vol. 195(C), pages 1047-1054.
    4. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    5. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
    6. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    7. Xu, Xinhua & Yu, Jinghua & Wang, Shengwei & Wang, Jinbo, 2014. "Research and application of active hollow core slabs in building systems for utilizing low energy sources," Applied Energy, Elsevier, vol. 116(C), pages 424-435.
    8. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    9. Baker, John, 2008. "New technology and possible advances in energy storage," Energy Policy, Elsevier, vol. 36(12), pages 4368-4373, December.
    10. Lehmann, B. & Dorer, V. & Gwerder, M. & Renggli, F. & Tödtli, J., 2011. "Thermally activated building systems (TABS): Energy efficiency as a function of control strategy, hydronic circuit topology and (cold) generation system," Applied Energy, Elsevier, vol. 88(1), pages 180-191, January.
    11. Raftery, Paul & Lee, Kwang Ho & Webster, Tom & Bauman, Fred, 2012. "Performance analysis of an integrated UFAD and radiant hydronic slab system," Applied Energy, Elsevier, vol. 90(1), pages 250-257.
    12. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    13. Wu, Wentao & Zhang, Wei & Benner, Jingru & Malkawi, Ali, 2020. "Critical evaluation of analytical methods for thermally activated building systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    14. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    15. Romaní, Joaquim & Cabeza, Luisa F. & de Gracia, Alvaro, 2018. "Development and experimental validation of a transient 2D numeric model for radiant walls," Renewable Energy, Elsevier, vol. 115(C), pages 859-870.
    16. Reynders, Glenn & Diriken, Jan & Saelens, Dirk, 2017. "Generic characterization method for energy flexibility: Applied to structural thermal storage in residential buildings," Applied Energy, Elsevier, vol. 198(C), pages 192-202.
    17. Christensen, Morten Herget & Li, Rongling & Pinson, Pierre, 2020. "Demand side management of heat in smart homes: Living-lab experiments," Energy, Elsevier, vol. 195(C).
    18. Kensby, Johan & Trüschel, Anders & Dalenbäck, Jan-Olof, 2015. "Potential of residential buildings as thermal energy storage in district heating systems – Results from a pilot test," Applied Energy, Elsevier, vol. 137(C), pages 773-781.
    19. Klein, Konstantin & Herkel, Sebastian & Henning, Hans-Martin & Felsmann, Clemens, 2017. "Load shifting using the heating and cooling system of an office building: Quantitative potential evaluation for different flexibility and storage options," Applied Energy, Elsevier, vol. 203(C), pages 917-937.
    20. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    21. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María M. Villar-Ramos & Iván Hernández-Pérez & Karla M. Aguilar-Castro & Ivett Zavala-Guillén & Edgar V. Macias-Melo & Irving Hernández-López & Juan Serrano-Arellano, 2022. "A Review of Thermally Activated Building Systems (TABS) as an Alternative for Improving the Indoor Environment of Buildings," Energies, MDPI, vol. 15(17), pages 1-31, August.
    2. Yang, Yang & Chen, Sarula & Zhang, Jiqiang, 2023. "A comprehensive study on transient thermal behaviors and performances of the modular pipe-embedded energy wall system under intermittent operation conditions," Energy, Elsevier, vol. 280(C).
    3. Ruta Vanaga & Jānis Narbuts & Ritvars Freimanis & Andra Blumberga, 2022. "Laboratory Testing of Small Scale Solar Facade Module with Phase Change Material and Adjustable Insulation Layer," Energies, MDPI, vol. 15(3), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yichi & Johansson, Pär & Kalagasidis, Angela Sasic, 2021. "Techno-economic assessment of thermal energy storage technologies for demand-side management in low-temperature individual heating systems," Energy, Elsevier, vol. 236(C).
    2. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Dominković, D.F. & Gianniou, P. & Münster, M. & Heller, A. & Rode, C., 2018. "Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization," Energy, Elsevier, vol. 153(C), pages 949-966.
    5. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    6. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    7. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    9. Schmelas, Martin & Feldmann, Thomas & Bollin, Elmar, 2017. "Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study," Applied Energy, Elsevier, vol. 199(C), pages 294-309.
    10. Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
    11. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    12. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Maljkovic, Danica & Basic, Bojana Dalbelo, 2020. "Determination of influential parameters for heat consumption in district heating systems using machine learning," Energy, Elsevier, vol. 201(C).
    14. Silvia Erba & Lorenzo Pagliano, 2021. "Combining Sufficiency, Efficiency and Flexibility to Achieve Positive Energy Districts Targets," Energies, MDPI, vol. 14(15), pages 1-32, August.
    15. Wu, Wentao & Zhang, Wei & Benner, Jingru & Malkawi, Ali, 2020. "Critical evaluation of analytical methods for thermally activated building systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    17. Jennifer Date & José A. Candanedo & Andreas K. Athienitis, 2021. "A Methodology for the Enhancement of the Energy Flexibility and Contingency Response of a Building through Predictive Control of Passive and Active Storage," Energies, MDPI, vol. 14(5), pages 1-28, March.
    18. Zygmunt Kowalski & Agnieszka Makara, 2022. "Sustainable Systems for the Production of District Heating Using Meat-Bone Meal as Biofuel: A Polish Case Study," Energies, MDPI, vol. 15(10), pages 1-15, May.
    19. Saletti, Costanza & Zimmerman, Nathan & Morini, Mirko & Kyprianidis, Konstantinos & Gambarotta, Agostino, 2021. "Enabling smart control by optimally managing the State of Charge of district heating networks," Applied Energy, Elsevier, vol. 283(C).
    20. He, Xianya & Huang, Jingzhi & Liu, Zekun & Lin, Jian & Jing, Rui & Zhao, Yingru, 2023. "Topology optimization of thermally activated building system in high-rise building," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.