IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v200y2017icp89-105.html
   My bibliography  Save this article

Effect of undisturbed ground temperature on the design of closed-loop geothermal systems: A case study in a semi-urban environment

Author

Listed:
  • Radioti, G.
  • Sartor, K.
  • Charlier, R.
  • Dewallef, P.
  • Nguyen, F.

Abstract

This paper presents temperature measurements in four Borehole Heat Exchangers (BHEs), equipped with fiber optics and located in a semi-urban environment (campus of the University of Liege, Belgium). A 3D numerical model is also presented to simulate the heat loss from the surrounding structures into the subsurface. The mean undisturbed ground temperature was estimated from data during the preliminary phase of a thermal response test (water circulation in the pipe loops), as well as from borehole logging measurements. The measurements during water circulation can significantly overestimate the ground temperature (up to 1.7°C in this case study) for high ambient air temperature during the test, resulting in an overestimation of the maximum extracted power and of the heat pump coefficient of performance (COP). To limit the error in the COP and the extracted power to less than 5%, the error in the undisturbed temperature estimation should not exceed ±1.5°C and ±0.6°C respectively. In urbanised areas, configurations of short BHEs (length<40m) could be economically advantageous (decreased installation and operation costs) compared to long BHEs, especially for temperature gradient lower than −0.05°C/m.

Suggested Citation

  • Radioti, G. & Sartor, K. & Charlier, R. & Dewallef, P. & Nguyen, F., 2017. "Effect of undisturbed ground temperature on the design of closed-loop geothermal systems: A case study in a semi-urban environment," Applied Energy, Elsevier, vol. 200(C), pages 89-105.
  • Handle: RePEc:eee:appene:v:200:y:2017:i:c:p:89-105
    DOI: 10.1016/j.apenergy.2017.05.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917305639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    3. Zolfagharroshan, Mohammad & Xu, Minghan & Boutot, Jade & Zueter, Ahmad F. & Tareen, Muhammad S.K. & Kang, Mary & Sasmito, Agus P., 2024. "Assessment of geothermal energy potential from abandoned oil and gas wells in Alberta, Canada," Applied Energy, Elsevier, vol. 375(C).
    4. Wu, Wentao & Zhang, Wei & Benner, Jingru & Malkawi, Ali, 2020. "Critical evaluation of analytical methods for thermally activated building systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    5. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    6. Wanli Wang & Guiling Wang & Feng Liu & Chunlei Liu, 2022. "Characterization of Ground Thermal Conditions for Shallow Geothermal Exploitation in the Central North China Plain (NCP) Area," Energies, MDPI, vol. 15(19), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:200:y:2017:i:c:p:89-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.