IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v199y2017icp294-309.html
   My bibliography  Save this article

Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study

Author

Listed:
  • Schmelas, Martin
  • Feldmann, Thomas
  • Bollin, Elmar

Abstract

The building sector is one of the main consumers of energy. Therefore, heating and cooling concepts for renewable energy sources become increasingly important. For this purpose, low-temperature systems such as thermo-active building systems (TABS) are particularly suitable. This paper presents results of the use of a novel adaptive and predictive computation method, based on multiple linear regression (AMLR) for the control of TABS in a passive seminar building. Detailed comparisons are shown between the standard TABS and AMLR strategies over a period of nine months each. In addition to the reduction of thermal energy use by approx. 26% and a significant reduction of the TABS pump operation time, this paper focuses on investment savings in a passive seminar building through the use of the AMLR strategy. This includes the reduction of peak power of the chilled beams (auxiliary system) as well as a simplification of the TABS hydronic circuit and the saving of an external temperature sensor. The AMLR proves its practicality by learning from the historical building operation, by dealing with forecasting errors and it is easy to integrate into a building automation system.

Suggested Citation

  • Schmelas, Martin & Feldmann, Thomas & Bollin, Elmar, 2017. "Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study," Applied Energy, Elsevier, vol. 199(C), pages 294-309.
  • Handle: RePEc:eee:appene:v:199:y:2017:i:c:p:294-309
    DOI: 10.1016/j.apenergy.2017.05.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917305408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    2. Lim, Jae-Han & Song, Jin-Hee & Song, Seung-Yeong, 2014. "Development of operational guidelines for thermally activated building system according to heating and cooling load characteristics," Applied Energy, Elsevier, vol. 126(C), pages 123-135.
    3. Lehmann, B. & Dorer, V. & Gwerder, M. & Renggli, F. & Tödtli, J., 2011. "Thermally activated building systems (TABS): Energy efficiency as a function of control strategy, hydronic circuit topology and (cold) generation system," Applied Energy, Elsevier, vol. 88(1), pages 180-191, January.
    4. Gwerder, M. & Tödtli, J. & Lehmann, B. & Dorer, V. & Güntensperger, W. & Renggli, F., 2009. "Control of thermally activated building systems (TABS) in intermittent operation with pulse width modulation," Applied Energy, Elsevier, vol. 86(9), pages 1606-1616, September.
    5. Raftery, Paul & Lee, Kwang Ho & Webster, Tom & Bauman, Fred, 2012. "Performance analysis of an integrated UFAD and radiant hydronic slab system," Applied Energy, Elsevier, vol. 90(1), pages 250-257.
    6. Gwerder, M. & Lehmann, B. & Tödtli, J. & Dorer, V. & Renggli, F., 2008. "Control of thermally-activated building systems (TABS)," Applied Energy, Elsevier, vol. 85(7), pages 565-581, July.
    7. Xu, Xinhua & Yu, Jinghua & Wang, Shengwei & Wang, Jinbo, 2014. "Research and application of active hollow core slabs in building systems for utilizing low energy sources," Applied Energy, Elsevier, vol. 116(C), pages 424-435.
    8. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2013. "Modeling of TABS-based thermally manageable buildings in Simulink," Applied Energy, Elsevier, vol. 104(C), pages 791-800.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Emmanouil Katsigiannis & Petros Antonios Gerogiannis & Ioannis Atsonios & Ioannis Mandilaras & Maria Founti, 2023. "Design and Parametric Analysis of a Solar-Driven Façade Active Layer System for Dynamic Insulation and Radiant Heating: A Renovation Solution for Residential Buildings," Energies, MDPI, vol. 16(13), pages 1-18, July.
    3. Jia, Hongyuan & Pang, Xiufeng & Haves, Philip, 2018. "Experimentally-determined characteristics of radiant systems for office buildings," Applied Energy, Elsevier, vol. 221(C), pages 41-54.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Jae-Han & Song, Jin-Hee & Song, Seung-Yeong, 2014. "Development of operational guidelines for thermally activated building system according to heating and cooling load characteristics," Applied Energy, Elsevier, vol. 126(C), pages 123-135.
    2. Wu, Wentao & Zhang, Wei & Benner, Jingru & Malkawi, Ali, 2020. "Critical evaluation of analytical methods for thermally activated building systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude," Applied Energy, Elsevier, vol. 146(C), pages 84-91.
    4. Jia, Hongyuan & Pang, Xiufeng & Haves, Philip, 2018. "Experimentally-determined characteristics of radiant systems for office buildings," Applied Energy, Elsevier, vol. 221(C), pages 41-54.
    5. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2014. "Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower," Applied Energy, Elsevier, vol. 127(C), pages 172-181.
    6. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Energy storage and heat extraction – From thermally activated building systems (TABS) to thermally homeostatic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 677-685.
    7. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2013. "Modeling of TABS-based thermally manageable buildings in Simulink," Applied Energy, Elsevier, vol. 104(C), pages 791-800.
    8. Heidenthaler, Daniel & Leeb, Markus & Schnabel, Thomas & Huber, Hermann, 2021. "Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach," Energy, Elsevier, vol. 233(C).
    9. Ibrahim, Mohamad & Wurtz, Etienne & Biwole, Pascal Henry & Achard, Patrick, 2014. "Transferring the south solar energy to the north facade through embedded water pipes," Energy, Elsevier, vol. 78(C), pages 834-845.
    10. Woong June Chung & Sang Hoon Park & Myoung Souk Yeo & Kwang Woo Kim, 2017. "Control of Thermally Activated Building System Considering Zone Load Characteristics," Sustainability, MDPI, vol. 9(4), pages 1-14, April.
    11. Wang, Lin-Shu & Ma, Peizheng, 2016. "The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings," Applied Energy, Elsevier, vol. 162(C), pages 183-196.
    12. Yu, Tao & Heiselberg, Per & Lei, Bo & Zhang, Chen & Pomianowski, Michal & Jensen, Rasmus, 2016. "Experimental study on the dynamic performance of a novel system combining natural ventilation with diffuse ceiling inlet and TABS," Applied Energy, Elsevier, vol. 169(C), pages 218-229.
    13. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Romaní, Joaquim & Cabeza, Luisa F. & de Gracia, Alvaro, 2018. "Development and experimental validation of a transient 2D numeric model for radiant walls," Renewable Energy, Elsevier, vol. 115(C), pages 859-870.
    15. He, Xianya & Huang, Jingzhi & Liu, Zekun & Lin, Jian & Jing, Rui & Zhao, Yingru, 2023. "Topology optimization of thermally activated building system in high-rise building," Energy, Elsevier, vol. 284(C).
    16. Xu, Xinhua & Yu, Jinghua & Wang, Shengwei & Wang, Jinbo, 2014. "Research and application of active hollow core slabs in building systems for utilizing low energy sources," Applied Energy, Elsevier, vol. 116(C), pages 424-435.
    17. Krzaczek, M. & Florczuk, J. & Tejchman, J., 2019. "Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings," Applied Energy, Elsevier, vol. 254(C).
    18. Bojić, Milorad & Cvetković, Dragan & Bojić, Ljubiša, 2015. "Decreasing energy use and influence to environment by radiant panel heating using different energy sources," Applied Energy, Elsevier, vol. 138(C), pages 404-413.
    19. Lehmann, B. & Dorer, V. & Gwerder, M. & Renggli, F. & Tödtli, J., 2011. "Thermally activated building systems (TABS): Energy efficiency as a function of control strategy, hydronic circuit topology and (cold) generation system," Applied Energy, Elsevier, vol. 88(1), pages 180-191, January.
    20. Georgios D. Kontes & Georgios I. Giannakis & Víctor Sánchez & Pablo De Agustin-Camacho & Ander Romero-Amorrortu & Natalia Panagiotidou & Dimitrios V. Rovas & Simone Steiger & Christopher Mutschler & G, 2018. "Simulation-Based Evaluation and Optimization of Control Strategies in Buildings," Energies, MDPI, vol. 11(12), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:199:y:2017:i:c:p:294-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.