IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics096014812400990x.html
   My bibliography  Save this article

Experimentally validated thermal modeling for temperature prediction of photovoltaic modules under variable environmental conditions

Author

Listed:
  • Keddouda, Abdelhak
  • Ihaddadene, Razika
  • Boukhari, Ali
  • Atia, Abdelmalek
  • Arıcı, Müslüm
  • Lebbihiat, Nacer
  • Ihaddadene, Nabila

Abstract

In this work, a detailed analysis and thermal modeling for temperature prediction of a stand-alone photovoltaic module is performed. The study aims to present precise estimation of module temperature, since it is an important parameter for power output calculation. Hence, the required data were collected via experiments. Accounting for all heat transfer mechanisms, and following model validation, a proposed algorithm was implemented to investigate heat transfer from the module to its surrounding and predict different layers’ temperature. Results indicate that accurate energy distribution and temperature prediction was achieved by the adopted thermal model, only about 16% of the received energy is converted to electrical power while the rest is released by heat. Moreover, the proposed simulation algorithm provided one of the best results in comparison to literature models, achieving an R2 of 0.963 and a MAE of 1.883, which is very close to the best overall model by King at R2=0.973 and MAE=1.663. Additionally, two new models for module temperature prediction were proposed. After testing on new data, the explicit model provided a reasonable first approximation attaining an adjusted R2 of 0.97 and a MSE of 3.505, and an accurate implicit model, achieving a MSE of only 1.268.

Suggested Citation

  • Keddouda, Abdelhak & Ihaddadene, Razika & Boukhari, Ali & Atia, Abdelmalek & Arıcı, Müslüm & Lebbihiat, Nacer & Ihaddadene, Nabila, 2024. "Experimentally validated thermal modeling for temperature prediction of photovoltaic modules under variable environmental conditions," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s096014812400990x
    DOI: 10.1016/j.renene.2024.120922
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812400990X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Wenbo & Ma, Tao & Shen, Lu & Li, Meng & Zhang, Yijie & Zhang, Wenjie, 2019. "Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions," Energy, Elsevier, vol. 188(C).
    2. Osma-Pinto, German & Ordóñez-Plata, Gabriel, 2020. "Dynamic thermal modelling for the prediction of the operating temperature of a PV panel with an integrated cooling system," Renewable Energy, Elsevier, vol. 152(C), pages 1041-1054.
    3. Gong, Yujian & Wang, Zuo & Lai, Zeyu & Jiang, Minlin, 2021. "TVACPSO-assisted analysis of the effects of temperature and irradiance on the PV module performances," Energy, Elsevier, vol. 227(C).
    4. Bevilacqua, Piero & Bruno, Roberto & Rollo, Antonino & Ferraro, Vittorio, 2022. "A novel thermal model for PV panels with back surface spray cooling," Energy, Elsevier, vol. 255(C).
    5. Keddouda, Abdelhak & Ihaddadene, Razika & Boukhari, Ali & Atia, Abdelmalek & Arıcı, Müslüm & Lebbihiat, Nacer & Ihaddadene, Nabila, 2024. "Photovoltaic module temperature prediction using various machine learning algorithms: Performance evaluation," Applied Energy, Elsevier, vol. 363(C).
    6. Ma, Tao & Guo, Zichang & Shen, Lu & Liu, Xing & Chen, Zhenwu & Zhou, Yong & Zhang, Xiaochun, 2021. "Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution," Applied Energy, Elsevier, vol. 298(C).
    7. Dong, Xiao-Jian & Shen, Jia-Ni & He, Guo-Xin & Ma, Zi-Feng & He, Yi-Jun, 2021. "A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction," Energy, Elsevier, vol. 234(C).
    8. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).
    9. Bailek, Nadjem & Bouchouicha, Kada & Hassan, Muhammed A. & Slimani, Abdeldjalil & Jamil, Basharat, 2020. "Implicit regression-based correlations to predict the back temperature of PV modules in the arid region of south Algeria," Renewable Energy, Elsevier, vol. 156(C), pages 57-67.
    10. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.
    11. Dong, Xiao-Jian & Shen, Jia-Ni & Ma, Zi-Feng & He, Yi-Jun, 2022. "Simultaneous operating temperature and output power prediction method for photovoltaic modules," Energy, Elsevier, vol. 260(C).
    12. Maarten Dörenkämper & Minne M. de Jong & Jan Kroon & Vilde Stueland Nysted & Josefine Selj & Torunn Kjeldstad, 2023. "Modeled and Measured Operating Temperatures of Floating PV Modules: A Comparison," Energies, MDPI, vol. 16(20), pages 1-18, October.
    13. Herrando, María & Fantoni, Guillermo & Cubero, Ana & Simón-Allué, Raquel & Guedea, Isabel & Fueyo, Norberto, 2023. "Numerical analysis of the fluid flow and heat transfer of a hybrid PV-thermal collector and performance assessment," Renewable Energy, Elsevier, vol. 209(C), pages 122-132.
    14. Hove, Tawanda, 2000. "A method for predicting long-term average performance of photovoltaic systems," Renewable Energy, Elsevier, vol. 21(2), pages 207-229.
    15. Kumar, Subodh & Sharma, V.B. & Kandpal, T.C. & Mullick, S.C., 1997. "Wind induced heat losses from outer cover of solar collectors," Renewable Energy, Elsevier, vol. 10(4), pages 613-616.
    16. Socrates Kaplanis & Eleni Kaplani, 2018. "A New Dynamic Model to Predict Transient and Steady State PV Temperatures Taking into Account the Environmental Conditions," Energies, MDPI, vol. 12(1), pages 1-17, December.
    17. Yildirim, Mehmet Ali & Cebula, Artur, 2024. "A numerical and experimental analysis of a novel highly-efficient water-based PV/T system," Energy, Elsevier, vol. 289(C).
    18. Abiola-Ogedengbe, Ayodeji & Hangan, Horia & Siddiqui, Kamran, 2015. "Experimental investigation of wind effects on a standalone photovoltaic (PV) module," Renewable Energy, Elsevier, vol. 78(C), pages 657-665.
    19. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    20. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    21. Lu, Hao & Zhao, Wenjun, 2019. "CFD prediction of dust pollution and impact on an isolated ground-mounted solar photovoltaic system," Renewable Energy, Elsevier, vol. 131(C), pages 829-840.
    22. Govindasamy, Dhanusiya & Daniel, Freedon & Kumar, Ashwani, 2024. "Performance enhancement of photovoltaic system using composite phase change materials," Energy, Elsevier, vol. 288(C).
    23. Ma, Xun & Li, Ming & Peng, Ye & Sun, Linyao & Chen, Chuangye, 2022. "Development of thermo–electrical loss model for photovoltaic module with inhomogeneous temperature," Energy, Elsevier, vol. 248(C).
    24. Tiwari, Arvind & Sodha, M.S., 2006. "Performance evaluation of hybrid PV/thermal water/air heating system: A parametric study," Renewable Energy, Elsevier, vol. 31(15), pages 2460-2474.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keddouda, Abdelhak & Ihaddadene, Razika & Boukhari, Ali & Atia, Abdelmalek & Arıcı, Müslüm & Lebbihiat, Nacer & Ihaddadene, Nabila, 2024. "Photovoltaic module temperature prediction using various machine learning algorithms: Performance evaluation," Applied Energy, Elsevier, vol. 363(C).
    2. Li, Fuxiang & Wu, Wei, 2022. "Coupled electrical-thermal performance estimation of photovoltaic devices: A transient multiphysics framework with robust parameter extraction and 3-D thermal analysis," Applied Energy, Elsevier, vol. 319(C).
    3. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    4. Kesler, Selami & Kivrak, Sinan & Dincer, Furkan & Rustemli, Sabir & Karaaslan, Muharrem & Unal, Emin & Erdiven, Utku, 2014. "The analysis of PV power potential and system installation in Manavgat, Turkey—A case study in winter season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 671-680.
    5. Ali Kareem Abdulrazzaq & Balázs Plesz & György Bognár, 2020. "A Novel Method for Thermal Modelling of Photovoltaic Modules/Cells under Varying Environmental Conditions," Energies, MDPI, vol. 13(13), pages 1-23, June.
    6. Dong, Xiao-Jian & Shen, Jia-Ni & He, Guo-Xin & Ma, Zi-Feng & He, Yi-Jun, 2021. "A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction," Energy, Elsevier, vol. 234(C).
    7. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.
    8. Kapsalis, Vasileios & Maduta, Carmen & Skandalos, Nikolaos & Wang, Meng & Bhuvad, Sushant Suresh & D'Agostino, Delia & Ma, Tao & Raj, Uday & Parker, Danny & Peng, Jinqing & Karamanis, Dimitris, 2024. "Critical assessment of large-scale rooftop photovoltaics deployment in the global urban environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    9. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Influence of irradiance incidence angle and installation configuration on the deposition of dust and dust-shading of a photovoltaic array," Energy, Elsevier, vol. 216(C).
    10. D'Orazio, M. & Di Perna, C. & Di Giuseppe, E., 2014. "Experimental operating cell temperature assessment of BIPV with different installation configurations on roofs under Mediterranean climate," Renewable Energy, Elsevier, vol. 68(C), pages 378-396.
    11. Raillani, Benyounes & Salhi, Mourad & Chaatouf, Dounia & Bria, Abir & Amraqui, Samir & Mezrhab, Ahmed, 2023. "A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height," Applied Energy, Elsevier, vol. 331(C).
    12. Villemin, Thomas & Claverie, Rémy & Sawicki, Jean-Paul & Parent, Gilles, 2022. "Thermal characterization of a photovoltaic panel under controlled conditions," Renewable Energy, Elsevier, vol. 198(C), pages 28-40.
    13. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.
    14. Monica Nicola & Matthew Berwind, 2024. "Improving Module Temperature Prediction Models for Floating Photovoltaic Systems: Analytical Insights from Operational Data," Energies, MDPI, vol. 17(17), pages 1-17, August.
    15. Al-Addous, Mohammad & Dalala, Zakariya & Class, Christina B. & Alawneh, Firas & Al-Taani, Hussein, 2017. "Performance analysis of off-grid PV systems in the Jordan Valley," Renewable Energy, Elsevier, vol. 113(C), pages 930-941.
    16. Dong, Xiao-Jian & Shen, Jia-Ni & Ma, Zi-Feng & He, Yi-Jun, 2022. "Simultaneous operating temperature and output power prediction method for photovoltaic modules," Energy, Elsevier, vol. 260(C).
    17. Dong, Xiao-Jian & Shen, Jia-Ni & Liu, Cheng-Wu & Ma, Zi-Feng & He, Yi-Jun, 2024. "Simultaneous capacity configuration and scheduling optimization of an integrated electrical vehicle charging station with photovoltaic and battery energy storage system," Energy, Elsevier, vol. 289(C).
    18. Eleni Kaplani & Socrates Kaplanis, 2020. "Dynamic Electro-Thermal PV Temperature and Power Output Prediction Model for Any PV Geometries in Free-Standing and BIPV Systems Operating under Any Environmental Conditions," Energies, MDPI, vol. 13(18), pages 1-20, September.
    19. Bizzarri, Federico & Brambilla, Angelo & Caretta, Lorenzo & Guardiani, Carlo, 2015. "Monitoring performance and efficiency of photovoltaic parks," Renewable Energy, Elsevier, vol. 78(C), pages 314-321.
    20. Karmendra Kumar Agrawal & Shibani Khanra Jha & Ravi Kant Mittal & Ajit Pratap Singh & Sanjay Vashishtha & Saurabh Gupta & Manoj Kumar Soni, 2024. "Predictive Modeling of Solar PV Panel Operating Temperature over Water Bodies: Comparative Performance Analysis with Ground-Mounted Installations," Energies, MDPI, vol. 17(14), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s096014812400990x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.