IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v298y2021ics0306261921006292.html
   My bibliography  Save this article

Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution

Author

Listed:
  • Ma, Tao
  • Guo, Zichang
  • Shen, Lu
  • Liu, Xing
  • Chen, Zhenwu
  • Zhou, Yong
  • Zhang, Xiaochun

Abstract

Performance prediction and efficiency improvement are two major focuses in the research area of solar photovoltaic (PV) applications. However, the uncertainty of environmental factors and the complexity of the photoelectric conversion mechanism pose a grand challenge to accurately predict the dynamic performance of PV modules under actual operating conditions. Besides, without a clear understanding of the relationship between energy loss processes and operation conditions, it is hard to suggest specific measures for efficiency improvement. In this paper, a coupled model, which consists of an electrical model, a thermal model and an energy loss model, is developed to predict the electrical-thermal performance and quantify the power loss of crystalline silicon PV modules under actual operating conditions. To validate the coupled model, a series of experiments were implemented, demonstrating that the calculated results agree very well with the simulated ones despite sunny or cloudy days. The study demonstrates that, on a typical sunny day, the energy loss occurring in the solar cell and from cell to module accounts for 71.1% and 14.6% respectively, and more than 60%of those losses will be dissipated as heat, which has a negative impact on solar PV performance. Finally, on account of various loss mechanisms, different mitigation measures, such as how to reduce thermalization loss, are suggested for PV temperature control and efficiency enhancement.

Suggested Citation

  • Ma, Tao & Guo, Zichang & Shen, Lu & Liu, Xing & Chen, Zhenwu & Zhou, Yong & Zhang, Xiaochun, 2021. "Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution," Applied Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006292
    DOI: 10.1016/j.apenergy.2021.117205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921006292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Wenbo & Ma, Tao & Shen, Lu & Li, Meng & Zhang, Yijie & Zhang, Wenjie, 2019. "Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions," Energy, Elsevier, vol. 188(C).
    2. Jinyue Yan & Ying Yang & Pietro Elia Campana & Jijiang He, 2019. "City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China," Nature Energy, Nature, vol. 4(8), pages 709-717, August.
    3. Kaushika, N.D. & Rai, Anil K., 2007. "An investigation of mismatch losses in solar photovoltaic cell networks," Energy, Elsevier, vol. 32(5), pages 755-759.
    4. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    5. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Orioli, Aldo & Di Gangi, Alessandra, 2013. "A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data," Applied Energy, Elsevier, vol. 102(C), pages 1160-1177.
    7. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    8. Jingbi You & Letian Dou & Ken Yoshimura & Takehito Kato & Kenichiro Ohya & Tom Moriarty & Keith Emery & Chun-Chao Chen & Jing Gao & Gang Li & Yang Yang, 2013. "A polymer tandem solar cell with 10.6% power conversion efficiency," Nature Communications, Nature, vol. 4(1), pages 1-10, June.
    9. Yang, Xiaohu & Wei, Pan & Wang, Xinyi & He, Ya-Ling, 2020. "Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam," Applied Energy, Elsevier, vol. 268(C).
    10. Ma, Tao & Yang, Hongxing & Lu, Lin, 2015. "Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems," Applied Energy, Elsevier, vol. 153(C), pages 56-62.
    11. Moon-Su Na & Jin-O Kim, 2019. "Reliability Evaluation of Micro-grids Containing PV System and Hydropower Plant," Energies, MDPI, vol. 12(3), pages 1-13, January.
    12. Gu, Wenbo & Ma, Tao & Li, Meng & Shen, Lu & Zhang, Yijie, 2020. "A coupled optical-electrical-thermal model of the bifacial photovoltaic module," Applied Energy, Elsevier, vol. 258(C).
    13. Kazemian, Arash & Salari, Ali & Hakkaki-Fard, Ali & Ma, Tao, 2019. "Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material," Applied Energy, Elsevier, vol. 238(C), pages 734-746.
    14. Ma, Tao & Yang, Hongxing & Lu, Lin, 2013. "Performance evaluation of a stand-alone photovoltaic system on an isolated island in Hong Kong," Applied Energy, Elsevier, vol. 112(C), pages 663-672.
    15. Yang, Xiaohu & Guo, Junfei & Yang, Bo & Cheng, Haonan & Wei, Pan & He, Ya-Ling, 2020. "Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit," Applied Energy, Elsevier, vol. 279(C).
    16. Shen, Lu & Li, Zhenpeng & Ma, Tao, 2020. "Analysis of the power loss and quantification of the energy distribution in PV module," Applied Energy, Elsevier, vol. 260(C).
    17. Hanifi, Hamed & Pfau, Charlotte & Turek, Marko & Schneider, Jens, 2018. "A practical optical and electrical model to estimate the power losses and quantification of different heat sources in silicon based PV modules," Renewable Energy, Elsevier, vol. 127(C), pages 602-612.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hosseinnia, Seyed Mojtaba & Sorin, Mikhail, 2022. "Energy targeting approach for optimum solar assisted ground source heat pump integration in buildings," Energy, Elsevier, vol. 248(C).
    2. Ma, Xun & Li, Ming & Peng, Ye & Sun, Linyao & Chen, Chuangye, 2022. "Development of thermo–electrical loss model for photovoltaic module with inhomogeneous temperature," Energy, Elsevier, vol. 248(C).
    3. Li, Fuxiang & Wu, Wei, 2022. "Coupled electrical-thermal performance estimation of photovoltaic devices: A transient multiphysics framework with robust parameter extraction and 3-D thermal analysis," Applied Energy, Elsevier, vol. 319(C).
    4. Kapsalis, Vasileios & Maduta, Carmen & Skandalos, Nikolaos & Wang, Meng & Bhuvad, Sushant Suresh & D'Agostino, Delia & Ma, Tao & Raj, Uday & Parker, Danny & Peng, Jinqing & Karamanis, Dimitris, 2024. "Critical assessment of large-scale rooftop photovoltaics deployment in the global urban environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Fang, Juan & Dong, Hao & Huo, Hailong & Yi, Xiaoping & Wen, Zhi & Liu, Qibin & Liu, Xunliang, 2023. "Thermodynamic performance of solar full-spectrum electricity generation system integrating photovoltaic cell with thermally-regenerative ammonia battery," Applied Energy, Elsevier, vol. 332(C).
    6. Saeed Iqbal & Shahid Nawaz Khan & Muhammad Sajid & Jawad Khan & Yasar Ayaz & Adeel Waqas, 2023. "Impact and performance efficiency analysis of grid-tied solar photovoltaic system based on installation site environmental factors," Energy & Environment, , vol. 34(7), pages 2343-2363, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    2. Shen, Lu & Li, Zhenpeng & Ma, Tao, 2020. "Analysis of the power loss and quantification of the energy distribution in PV module," Applied Energy, Elsevier, vol. 260(C).
    3. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    4. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Li, Zongyu & Wang, Yuhong, 2023. "Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement," Applied Energy, Elsevier, vol. 342(C).
    5. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    6. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    7. Zheng, Likai & Xuan, Yimin, 2021. "Performance estimation of a V-shaped perovskite/silicon tandem device: A case study based on a bifacial heterojunction silicon cell," Applied Energy, Elsevier, vol. 301(C).
    8. Li, Zhenpeng & Ma, Tao, 2020. "Peer-to-peer electricity trading in grid-connected residential communities with household distributed photovoltaic," Applied Energy, Elsevier, vol. 278(C).
    9. Kapsalis, Vasileios & Maduta, Carmen & Skandalos, Nikolaos & Wang, Meng & Bhuvad, Sushant Suresh & D'Agostino, Delia & Ma, Tao & Raj, Uday & Parker, Danny & Peng, Jinqing & Karamanis, Dimitris, 2024. "Critical assessment of large-scale rooftop photovoltaics deployment in the global urban environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    11. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    12. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    13. Alejandro Sallyth Guerrero Hernandez & Lúcia Valéria Ramos Arruda, 2021. "Economic viability and optimization of solar microgrids with hybrid storage in a non-interconnected zone in Colombia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12842-12866, September.
    14. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Optimal design of an autonomous solar–wind-pumped storage power supply system," Applied Energy, Elsevier, vol. 160(C), pages 728-736.
    15. Gu, Wenbo & Li, Senji & Liu, Xing & Chen, Zhenwu & Zhang, Xiaochun & Ma, Tao, 2021. "Experimental investigation of the bifacial photovoltaic module under real conditions," Renewable Energy, Elsevier, vol. 173(C), pages 1111-1122.
    16. Xue, Liya & Liu, Junling & Lin, Xiaojing & Li, Mengyue & Kobashi, Takuro, 2024. "Assessing urban rooftop PV economics for regional deployment by integrating local socioeconomic, technological, and policy conditions," Applied Energy, Elsevier, vol. 353(PA).
    17. Kazemian, Arash & Salari, Ali & Hakkaki-Fard, Ali & Ma, Tao, 2019. "Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material," Applied Energy, Elsevier, vol. 238(C), pages 734-746.
    18. Gu, Wenbo & Ma, Tao & Li, Meng & Shen, Lu & Zhang, Yijie, 2020. "A coupled optical-electrical-thermal model of the bifacial photovoltaic module," Applied Energy, Elsevier, vol. 258(C).
    19. Ma, Tao & Yang, Hongxing & Lu, Lin, 2017. "Long term performance analysis of a standalone photovoltaic system under real conditions," Applied Energy, Elsevier, vol. 201(C), pages 320-331.
    20. Peñaranda Chenche, Luz Elena & Hernandez Mendoza, Oscar Saul & Bandarra Filho, Enio Pedone, 2018. "Comparison of four methods for parameter estimation of mono- and multi-junction photovoltaic devices using experimental data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2823-2838.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.