IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v248y2022ics0360544222004455.html
   My bibliography  Save this article

Development of thermo–electrical loss model for photovoltaic module with inhomogeneous temperature

Author

Listed:
  • Ma, Xun
  • Li, Ming
  • Peng, Ye
  • Sun, Linyao
  • Chen, Chuangye

Abstract

Accurate, efficient, and reliable measurements of solar photovoltaic (PV) modules are essential for the evaluation and diagnosis of the actual operating status of PV plants. However, current online measurements and extraction models are limited because they do not account for power losses caused by inhomogeneous thermal performance of photovoltaic modules. Accordingly, this paper develops a coupled thermo–electrical loss model to access the power generation, energy losses, and degradation rate of photovoltaic modules with inhomogeneous temperature under actual operating conditions. The experiments indicate that the temperature coefficient of power dissipation and efficiency for solar cells with uneven temperature distribution PV modules are within −0.68W/oC to −0.83 W/°C and −0.46%/oC to −5.81%/oC, respectively. Additionally, the relative error values for the maximum power range from −2.54% to 4.09%, demonstrating the feasibility of the proposed model for predicting the power output behavior of operating PV modules with inhomogeneous temperature distributions. Furthermore, the daily performances of the modules indicate heat and electricity losses ranging from 0.245 kWh to 0.337 kWh, while the ratios of electrical energy dissipation to daily losses vary from 36% to 50%. To ensure the reliability of measuring degradation rates, the solar irradiance thresholds of PV module performance tests are nearly 632W/m2, 781W/m2, 875W/m2, and 875W/m2, respectively. Finally, for the long-term performance valuation, the levelized costs of electricity increase by approximately 0.011 CNY/kWh for every 5% reduction in annual power generation, and the PBP is extended by 4.81yr, 4.22yr, 3.62yr, and 7.10yr, respectively.

Suggested Citation

  • Ma, Xun & Li, Ming & Peng, Ye & Sun, Linyao & Chen, Chuangye, 2022. "Development of thermo–electrical loss model for photovoltaic module with inhomogeneous temperature," Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004455
    DOI: 10.1016/j.energy.2022.123542
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222004455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Čabo, Filip Grubišić & Marinić-Kragić, Ivo & Garma, Tonko & Nižetić, Sandro, 2021. "Development of thermo-electrical model of photovoltaic panel under hot-spot conditions with experimental validation," Energy, Elsevier, vol. 230(C).
    2. Gu, Wenbo & Ma, Tao & Shen, Lu & Li, Meng & Zhang, Yijie & Zhang, Wenjie, 2019. "Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions," Energy, Elsevier, vol. 188(C).
    3. Wang, Yongli & Gao, Mingchen & Wang, Jingyan & Wang, Shuo & Liu, Yang & Zhu, Jinrong & Tan, Zhongfu, 2021. "Measurement and key influencing factors of the economic benefits for China’s photovoltaic power generation: A LCOE-based hybrid model," Renewable Energy, Elsevier, vol. 169(C), pages 935-952.
    4. Dehghanzadeh, Ahmad & Farahani, Gholamreza & Maboodi, Mohsen, 2017. "A novel approximate explicit double-diode model of solar cells for use in simulation studies," Renewable Energy, Elsevier, vol. 103(C), pages 468-477.
    5. Wiengmoon, Buntoon & Kirtikara, Krissanapong & Jivacate, Chaya & Chenvidhya, Dhirayut, 2013. "Local parallel resistances of solar cell derived by the thermal image analysis," Renewable Energy, Elsevier, vol. 55(C), pages 49-54.
    6. Ma, Tao & Guo, Zichang & Shen, Lu & Liu, Xing & Chen, Zhenwu & Zhou, Yong & Zhang, Xiaochun, 2021. "Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution," Applied Energy, Elsevier, vol. 298(C).
    7. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    8. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    9. Arrinda, M. & Berecibar, M. & Oyarbide, M. & Macicior, H. & Muxika, E. & Messagie, M., 2020. "Levelized cost of electricity calculation of the energy generation plant of a CO2 neutral micro-grid," Energy, Elsevier, vol. 208(C).
    10. Rajput, Pramod & Shyam, & Tomar, Vivek & Tiwari, G.N. & Sastry, O.S. & Bhatti, T.S., 2018. "A thermal model for N series connected glass/cell/polymer sheet and glass/cell/glass crystalline silicon photovoltaic modules with hot solar cells connected in series and its thermal losses in real ou," Renewable Energy, Elsevier, vol. 126(C), pages 370-386.
    11. Silvestre, Santiago & Tahri, Ali & Tahri, Fatima & Benlebna, Soumiya & Chouder, Aissa, 2018. "Evaluation of the performance and degradation of crystalline silicon-based photovoltaic modules in the Saharan environment," Energy, Elsevier, vol. 152(C), pages 57-63.
    12. Tsanakas, John A. & Ha, Long & Buerhop, Claudia, 2016. "Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 695-709.
    13. Li, Qingxiang & Zhu, Li & Sun, Yong & Lu, Lin & Yang, Yang, 2020. "Performance prediction of Building Integrated Photovoltaics under no-shading, shading and masking conditions using a multi-physics model," Energy, Elsevier, vol. 213(C).
    14. Yu, Qiongwan & Hu, Mingke & Li, Junfei & Wang, Yunyun & Pei, Gang, 2020. "Development of a 2D temperature-irradiance coupling model for performance characterizations of the flat-plate photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 153(C), pages 404-419.
    15. Huang, Gongyi & Liang, Ying & Sun, Xiaofang & Xu, Chuanzhong & Yu, Fei, 2020. "Analyzing S-Shaped I–V characteristics of solar cells by solving three-diode lumped-parameter equivalent circuit model explicitly," Energy, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Li, Zongyu & Wang, Yuhong, 2023. "Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement," Applied Energy, Elsevier, vol. 342(C).
    2. Kapsalis, Vasileios & Maduta, Carmen & Skandalos, Nikolaos & Wang, Meng & Bhuvad, Sushant Suresh & D'Agostino, Delia & Ma, Tao & Raj, Uday & Parker, Danny & Peng, Jinqing & Karamanis, Dimitris, 2024. "Critical assessment of large-scale rooftop photovoltaics deployment in the global urban environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Ma, Tao & Guo, Zichang & Shen, Lu & Liu, Xing & Chen, Zhenwu & Zhou, Yong & Zhang, Xiaochun, 2021. "Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution," Applied Energy, Elsevier, vol. 298(C).
    4. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    5. Bouaichi, Abdellatif & Alami Merrouni, Ahmed & Hajjaj, Charaf & Messaoudi, Choukri & Ghennioui, Abdellatif & Benlarabi, Ahmed & Ikken, Badr & El Amrani, Aumeur & Zitouni, Houssin, 2019. "In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions: The case of Morocco," Renewable Energy, Elsevier, vol. 143(C), pages 1500-1518.
    6. Hu, Mingke & Guo, Chao & Zhao, Bin & Ao, Xianze & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2021. "A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 167(C), pages 884-898.
    7. Li, Fuxiang & Wu, Wei, 2022. "Coupled electrical-thermal performance estimation of photovoltaic devices: A transient multiphysics framework with robust parameter extraction and 3-D thermal analysis," Applied Energy, Elsevier, vol. 319(C).
    8. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    9. Chiwu Bu & Tao Liu & Tao Wang & Hai Zhang & Stefano Sfarra, 2023. "A CNN-Architecture-Based Photovoltaic Cell Fault Classification Method Using Thermographic Images," Energies, MDPI, vol. 16(9), pages 1-13, April.
    10. Kazemian, Arash & Khatibi, Meysam & Ma, Tao & Peng, Jinqing & Hongxing, Yang, 2023. "A thermal performance-enhancing strategy of photovoltaic thermal systems by applying surface area partially covered by solar cells," Applied Energy, Elsevier, vol. 329(C).
    11. Papul Changmai & Sunil Deka & Shashank Kumar & Thanikanti Sudhakar Babu & Belqasem Aljafari & Benedetto Nastasi, 2022. "A Critical Review on the Estimation Techniques of the Solar PV Cell’s Unknown Parameters," Energies, MDPI, vol. 15(19), pages 1-20, September.
    12. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "A Comprehensive Evaluation Model on Optimal Operational Schedules for Battery Energy Storage System by Maximizing Self-Consumption Strategy and Genetic Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    13. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    14. Ding, Yihong & Tan, Qinliang & Shan, Zijing & Han, Jian & Zhang, Yimei, 2023. "A two-stage dispatching optimization strategy for hybrid renewable energy system with low-carbon and sustainability in ancillary service market," Renewable Energy, Elsevier, vol. 207(C), pages 647-659.
    15. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "Validation of a Simulation-Based Pre-Assessment Process for Solar Photovoltaic Technology Implemented on Rooftops of South African Shopping Centres," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    16. Muhammed Shahid & Rizwan Aslam Butt & Attaullah Khawaja, 2022. "Fiscal- and Space-Constrained Energy Optimization Model for Hybrid Grid-Tied Solar Nanogrids," Energies, MDPI, vol. 15(21), pages 1-15, October.
    17. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Jeoung, Jaewon & Hong, Taehoon, 2024. "Reinforcement learning-based optimal scheduling model of battery energy storage system at the building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    18. Xianping Zhu & Shaowu Li & Jingxun Fan, 2023. "An Overall Linearized Modeling Method and Associated Delay Time Model for the PV System," Energies, MDPI, vol. 16(10), pages 1-37, May.
    19. Šlamberger, Jan & Schwark, Michael & Van Aken, Bas B. & Virtič, Peter, 2018. "Comparison of potential-induced degradation (PID) of n-type and p-type silicon solar cells," Energy, Elsevier, vol. 161(C), pages 266-276.
    20. Turgut Karahüseyin & Serkan Abbasoğlu, 2022. "Performance Loss Rates of a 1 MWp PV Plant with Various Tilt Angle, Orientation and Installed Environment in the Capital of Cyprus," Sustainability, MDPI, vol. 14(15), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.