IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p2-d191969.html
   My bibliography  Save this article

A New Dynamic Model to Predict Transient and Steady State PV Temperatures Taking into Account the Environmental Conditions

Author

Listed:
  • Socrates Kaplanis

    (Renewable Energy Systems Lab, Technological Educational Institute of Western Greece, M. Alexandrou 1, 26334 Patra, Greece)

  • Eleni Kaplani

    (Engineering, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK)

Abstract

Photovoltaic (PV) cell and module temperature profiles, T c and T pv , respectively, developed under solar irradiance were predicted and measured both at transient and steady state conditions. The predicted and measured T c or T pv covered both a bare c-Si PV cell, by SOLARTEC, at laboratory conditions using a solar light simulator, as well as various c-Si and pc-Si modules (SM55, Bioenergy 195W, Energy Solutions 125W) operating in field conditions. The time constants, τ, of the T c and T pv profiles were determined by the proposed model and calculated using the experimentally obtained profiles for both the bare PV cell and PV modules. For model validation, the predicted steady state and transient temperature profiles were compared with experimental ones and also with those generated from other models. The effect of the ambient temperature, T a , wind speed, v w , and the solar irradiance, I T , on the model performance, as well as of the mounting geometries, was investigated and incorporated in the prediction model. The predicted temperatures had the best matching to the measured ones in comparison to those from six other models. The model developed is applicable to any geographical site and environmental conditions.

Suggested Citation

  • Socrates Kaplanis & Eleni Kaplani, 2018. "A New Dynamic Model to Predict Transient and Steady State PV Temperatures Taking into Account the Environmental Conditions," Energies, MDPI, vol. 12(1), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:2-:d:191969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D'Orazio, M. & Di Perna, C. & Di Giuseppe, E., 2014. "Experimental operating cell temperature assessment of BIPV with different installation configurations on roofs under Mediterranean climate," Renewable Energy, Elsevier, vol. 68(C), pages 378-396.
    2. Trinuruk, Piyatida & Sorapipatana, Chumnong & Chenvidhya, Dhirayut, 2009. "Estimating operating cell temperature of BIPV modules in Thailand," Renewable Energy, Elsevier, vol. 34(11), pages 2515-2523.
    3. Waithiru Charles Lawrence Kamuyu & Jong Rok Lim & Chang Sub Won & Hyung Keun Ahn, 2018. "Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs," Energies, MDPI, vol. 11(2), pages 1-13, February.
    4. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    5. Saadon, Syamimi & Gaillard, Leon & Giroux-Julien, Stéphanie & Ménézo, Christophe, 2016. "Simulation study of a naturally-ventilated building integrated photovoltaic/thermal (BIPV/T) envelope," Renewable Energy, Elsevier, vol. 87(P1), pages 517-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eleni Kaplani & Socrates Kaplanis, 2020. "Dynamic Electro-Thermal PV Temperature and Power Output Prediction Model for Any PV Geometries in Free-Standing and BIPV Systems Operating under Any Environmental Conditions," Energies, MDPI, vol. 13(18), pages 1-20, September.
    2. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Hoseinzadeh, Siamak & Moser, David & Nastasi, Benedetto & Sayyaadi, Hoseyn & Astiaso Garcia, Davide, 2023. "Thermography and machine learning combination for comprehensive analysis of transient response of a photovoltaic module to water cooling," Renewable Energy, Elsevier, vol. 210(C), pages 451-461.
    3. Keddouda, Abdelhak & Ihaddadene, Razika & Boukhari, Ali & Atia, Abdelmalek & Arıcı, Müslüm & Lebbihiat, Nacer & Ihaddadene, Nabila, 2024. "Experimentally validated thermal modeling for temperature prediction of photovoltaic modules under variable environmental conditions," Renewable Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaplanis, S. & Kaplani, E. & Kaldellis, J.K., 2022. "PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency a," Renewable Energy, Elsevier, vol. 181(C), pages 235-249.
    2. Rustemli, Sabir & Dincer, Furkan & Unal, Emin & Karaaslan, Muharrem & Sabah, Cumali, 2013. "The analysis on sun tracking and cooling systems for photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 598-603.
    3. Dong Eun Jung & Chanuk Lee & Kee Han Kim & Sung Lok Do, 2020. "Development of a Predictive Model for a Photovoltaic Module’s Surface Temperature," Energies, MDPI, vol. 13(15), pages 1-18, August.
    4. D'Orazio, M. & Di Perna, C. & Di Giuseppe, E., 2014. "Experimental operating cell temperature assessment of BIPV with different installation configurations on roofs under Mediterranean climate," Renewable Energy, Elsevier, vol. 68(C), pages 378-396.
    5. Kesler, Selami & Kivrak, Sinan & Dincer, Furkan & Rustemli, Sabir & Karaaslan, Muharrem & Unal, Emin & Erdiven, Utku, 2014. "The analysis of PV power potential and system installation in Manavgat, Turkey—A case study in winter season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 671-680.
    6. Serrano-Luján, L. & Toledo, C. & Colmenar, J.M. & Abad, J. & Urbina, A., 2022. "Accurate thermal prediction model for building-integrated photovoltaics systems using guided artificial intelligence algorithms," Applied Energy, Elsevier, vol. 315(C).
    7. Boccalatte, Alessia & Thebault, Martin & Paolini, Riccardo & Fossa, Marco & Ramousse, Julien & Ménézo, Christophe & Santamouris, Mattheos, 2023. "Assessing the combined effects of local climate and mounting configuration on the electrical and thermal performance of photovoltaic systems. Application to the greater Sydney area," Renewable Energy, Elsevier, vol. 219(P1).
    8. Socrates Kaplanis & Eleni Kaplani & John K. Kaldellis, 2023. "PV Temperature Prediction Incorporating the Effect of Humidity and Cooling Due to Seawater Flow and Evaporation on Modules Simulating Floating PV Conditions," Energies, MDPI, vol. 16(12), pages 1-19, June.
    9. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    10. Al-Addous, Mohammad & Dalala, Zakariya & Class, Christina B. & Alawneh, Firas & Al-Taani, Hussein, 2017. "Performance analysis of off-grid PV systems in the Jordan Valley," Renewable Energy, Elsevier, vol. 113(C), pages 930-941.
    11. Arsenio Barbón & Ángel Gutiérrez & Luis Bayón & Covadonga Bayón-Cueli & Javier Aparicio-Bermejo, 2023. "Economic Analysis of a Pumped Hydroelectric Storage-Integrated Floating PV System in the Day-Ahead Iberian Electricity Market," Energies, MDPI, vol. 16(4), pages 1-24, February.
    12. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.
    13. Eleni Kaplani & Socrates Kaplanis, 2020. "Dynamic Electro-Thermal PV Temperature and Power Output Prediction Model for Any PV Geometries in Free-Standing and BIPV Systems Operating under Any Environmental Conditions," Energies, MDPI, vol. 13(18), pages 1-20, September.
    14. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    15. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    16. Meng, Zhuo & Zhao, Yiman & Tang, Shiqing & Sun, Yize, 2020. "An efficient datasheet-based parameters extraction method for two-diode photovoltaic cell and cells model," Renewable Energy, Elsevier, vol. 153(C), pages 1174-1182.
    17. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    18. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    19. Amirhossein Fathi & Masoomeh Bararzadeh Ledari & Yadollah Saboohi, 2021. "Evaluation of Optimal Occasional Tilt on Photovoltaic Power Plant Energy Efficiency and Land Use Requirements, Iran," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    20. Obiwulu, Anthony Umunnakwe & Erusiafe, Nald & Olopade, Muteeu Abayomi & Nwokolo, Samuel Chukwujindu, 2020. "Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance," Renewable Energy, Elsevier, vol. 154(C), pages 404-431.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:2-:d:191969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.