IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v78y2015icp314-321.html
   My bibliography  Save this article

Monitoring performance and efficiency of photovoltaic parks

Author

Listed:
  • Bizzarri, Federico
  • Brambilla, Angelo
  • Caretta, Lorenzo
  • Guardiani, Carlo

Abstract

An approach allowing the on-target computation of efficiency and yield of large (hundreds of kW), grid-connected photovoltaic (PV) parks is presented. An efficiency metric is used to trigger alarms and to plan maintenance interventions. An accurate simulation model of the system, that is capable of taking into account all relevant environmental variables, has been used to precisely determine the expected baseline performances. Measured and simulated power together with string current data are constantly updated and monitored and then processed by using a novel figure of merit (FOM), to define aggregate efficiency indices both at the overall park level and at single string level. Aggregate indices on strings narrow down the search for sub-performing elements and allow the determination, possibly in one day, of whether the entire PV system or one of its components is not performing as expected. A workflow based on this approach is introduced along with some case studies attesting its effectiveness.

Suggested Citation

  • Bizzarri, Federico & Brambilla, Angelo & Caretta, Lorenzo & Guardiani, Carlo, 2015. "Monitoring performance and efficiency of photovoltaic parks," Renewable Energy, Elsevier, vol. 78(C), pages 314-321.
  • Handle: RePEc:eee:renene:v:78:y:2015:i:c:p:314-321
    DOI: 10.1016/j.renene.2015.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115000099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alonso García, M.C. & Balenzategui, J.L., 2004. "Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations," Renewable Energy, Elsevier, vol. 29(12), pages 1997-2010.
    2. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    3. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel De Simón-Martín & Ana-María Diez-Suárez & Laura Álvarez-de Prado & Alberto González-Martínez & Álvaro De la Puente-Gil & Jorge Blanes-Peiró, 2017. "Development of a GIS Tool for High Precision PV Degradation Monitoring and Supervision: Feasibility Analysis in Large and Small PV Plants," Sustainability, MDPI, vol. 9(6), pages 1-29, June.
    2. Roy, Swapna & Ghosh, Biswajit, 2017. "Land utilization performance of ground mounted photovoltaic power plants: A case study," Renewable Energy, Elsevier, vol. 114(PB), pages 1238-1246.
    3. Santiago, I. & Trillo-Montero, D. & Moreno-Garcia, I.M. & Pallarés-López, V. & Luna-Rodríguez, J.J., 2018. "Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 70-89.
    4. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    5. Luís G. Monteiro & Wilson N. Macedo & Pedro F. Torres & Márcio M. Silva & Guilherme Amaral & Alexandre S. Piterman & Bruno M. Lopes & Juliano M. Fraga & Wallace C. Boaventura, 2017. "One-Year Monitoring PV Power Plant Installed on Rooftop of Mineirão Fifa World Cup/Olympics Football Stadium," Energies, MDPI, vol. 10(2), pages 1-23, February.
    6. Jun-Hyun Shin & Jin-O Kim, 2020. "On-Line Diagnosis and Fault State Classification Method of Photovoltaic Plant," Energies, MDPI, vol. 13(17), pages 1-12, September.
    7. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    2. D'Orazio, M. & Di Perna, C. & Di Giuseppe, E., 2014. "Experimental operating cell temperature assessment of BIPV with different installation configurations on roofs under Mediterranean climate," Renewable Energy, Elsevier, vol. 68(C), pages 378-396.
    3. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.
    4. Docimo, D.J. & Ghanaatpishe, M. & Mamun, A., 2017. "Extended Kalman Filtering to estimate temperature and irradiation for maximum power point tracking of a photovoltaic module," Energy, Elsevier, vol. 120(C), pages 47-57.
    5. Bevilacqua, Piero & Perrella, Stefania & Bruno, Roberto & Arcuri, Natale, 2021. "An accurate thermal model for the PV electric generation prediction: long-term validation in different climatic conditions," Renewable Energy, Elsevier, vol. 163(C), pages 1092-1112.
    6. Santiago, I. & Trillo-Montero, D. & Moreno-Garcia, I.M. & Pallarés-López, V. & Luna-Rodríguez, J.J., 2018. "Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 70-89.
    7. Alami, Abdul Hai, 2016. "Synthetic clay as an alternative backing material for passive temperature control of photovoltaic cells," Energy, Elsevier, vol. 108(C), pages 195-200.
    8. Kesler, Selami & Kivrak, Sinan & Dincer, Furkan & Rustemli, Sabir & Karaaslan, Muharrem & Unal, Emin & Erdiven, Utku, 2014. "The analysis of PV power potential and system installation in Manavgat, Turkey—A case study in winter season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 671-680.
    9. Ali Kareem Abdulrazzaq & Balázs Plesz & György Bognár, 2020. "A Novel Method for Thermal Modelling of Photovoltaic Modules/Cells under Varying Environmental Conditions," Energies, MDPI, vol. 13(13), pages 1-23, June.
    10. Eldin, S.A. Sharaf & Abd-Elhady, M.S. & Kandil, H.A., 2016. "Feasibility of solar tracking systems for PV panels in hot and cold regions," Renewable Energy, Elsevier, vol. 85(C), pages 228-233.
    11. Pantic, Lana S. & Pavlović, Tomislav M. & Milosavljević, Dragana D. & Radonjic, Ivana S. & Radovic, Miodrag K. & Sazhko, Galina, 2016. "The assessment of different models to predict solar module temperature, output power and efficiency for Nis, Serbia," Energy, Elsevier, vol. 109(C), pages 38-48.
    12. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.
    13. Al-Addous, Mohammad & Dalala, Zakariya & Class, Christina B. & Alawneh, Firas & Al-Taani, Hussein, 2017. "Performance analysis of off-grid PV systems in the Jordan Valley," Renewable Energy, Elsevier, vol. 113(C), pages 930-941.
    14. Karmendra Kumar Agrawal & Shibani Khanra Jha & Ravi Kant Mittal & Ajit Pratap Singh & Sanjay Vashishtha & Saurabh Gupta & Manoj Kumar Soni, 2024. "Predictive Modeling of Solar PV Panel Operating Temperature over Water Bodies: Comparative Performance Analysis with Ground-Mounted Installations," Energies, MDPI, vol. 17(14), pages 1-24, July.
    15. Rustemli, Sabir & Dincer, Furkan & Unal, Emin & Karaaslan, Muharrem & Sabah, Cumali, 2013. "The analysis on sun tracking and cooling systems for photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 598-603.
    16. Chatzipanagi, Anatoli & Frontini, Francesco & Virtuani, Alessandro, 2016. "BIPV-temp: A demonstrative Building Integrated Photovoltaic installation," Applied Energy, Elsevier, vol. 173(C), pages 1-12.
    17. Roumpakias, Elias & Zogou, Olympia & Stamatelos, Anastassios, 2015. "Correlation of actual efficiency of photovoltaic panels with air mass," Renewable Energy, Elsevier, vol. 74(C), pages 70-77.
    18. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Trinuruk, Piyatida & Sorapipatana, Chumnong & Chenvidhya, Dhirayut, 2009. "Estimating operating cell temperature of BIPV modules in Thailand," Renewable Energy, Elsevier, vol. 34(11), pages 2515-2523.
    20. Jiang, Joe-Air & Wang, Jen-Cheng & Kuo, Kun-Chang & Su, Yu-Li & Shieh, Jyh-Cherng & Chou, Jui-Jen, 2012. "Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions," Energy, Elsevier, vol. 44(1), pages 292-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:78:y:2015:i:c:p:314-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.