IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v188y2019ics0360544219317384.html
   My bibliography  Save this article

Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions

Author

Listed:
  • Gu, Wenbo
  • Ma, Tao
  • Shen, Lu
  • Li, Meng
  • Zhang, Yijie
  • Zhang, Wenjie

Abstract

This paper presents a coupled electrical-thermal model for solar photovoltaic (PV) modules, under an unsteady state and various conditions, including ambient temperature, solar radiation and wind velocity. Validation shows that the electrical and thermal models present high agreement with the experimental data. The developed model after validation is then applied to investigate the distribution of thermal resistance, the influence of environmental conditions and cooling methods. Results show that the radiative and convective thermal resistances play a significant role in PV electrical-thermal performance, while conductive thermal resistance can be neglected for simplification in some cases. The results also demonstrate the effects of weather conditions including solar radiation, ambient temperature and wind velocity on PV performance vary and they need to be selected carefully during parameters design. Moreover, a dynamic estimation of different seasons and a long-term evaluation of an entire year for a specific PV array have been done to assess the performance of the coupled model. The simulated results are in good agreement with the experimental data in spite of the weather conditions, in which the relative errors of daily energy in four different seasons are just 1.06%–6.17%, while the average monthly energy based on the proposed model (1185.4 kWh) only deviates 4.66% from that extracted by PVsyst software (1132.6 kWh), which both verify the accuracy of the proposed model again.

Suggested Citation

  • Gu, Wenbo & Ma, Tao & Shen, Lu & Li, Meng & Zhang, Yijie & Zhang, Wenjie, 2019. "Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions," Energy, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317384
    DOI: 10.1016/j.energy.2019.116043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219317384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    2. Dehghanzadeh, Ahmad & Farahani, Gholamreza & Maboodi, Mohsen, 2017. "A novel approximate explicit double-diode model of solar cells for use in simulation studies," Renewable Energy, Elsevier, vol. 103(C), pages 468-477.
    3. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    4. Zhao, Jiaxin & Ma, Tao & Li, Zhenpeng & Song, Aotian, 2019. "Year-round performance analysis of a photovoltaic panel coupled with phase change material," Applied Energy, Elsevier, vol. 245(C), pages 51-64.
    5. Sark, W.G.J.H.M. van, 2011. "Feasibility of photovoltaic - Thermoelectric hybrid modules," Applied Energy, Elsevier, vol. 88(8), pages 2785-2790, August.
    6. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.
    7. Ma, Tao & Yang, Hongxing & Lu, Lin, 2013. "Performance evaluation of a stand-alone photovoltaic system on an isolated island in Hong Kong," Applied Energy, Elsevier, vol. 112(C), pages 663-672.
    8. Celik, Ali Naci & Acikgoz, NasIr, 2007. "Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models," Applied Energy, Elsevier, vol. 84(1), pages 1-15, January.
    9. Gökmen, Nuri & Hu, Weihao & Hou, Peng & Chen, Zhe & Sera, Dezso & Spataru, Sergiu, 2016. "Investigation of wind speed cooling effect on PV panels in windy locations," Renewable Energy, Elsevier, vol. 90(C), pages 283-290.
    10. Sinke, Wim C., 2019. "Development of photovoltaic technologies for global impact," Renewable Energy, Elsevier, vol. 138(C), pages 911-914.
    11. Orioli, Aldo, 2020. "An accurate one-diode model suited to represent the current-voltage characteristics of crystalline and thin-film photovoltaic modules," Renewable Energy, Elsevier, vol. 145(C), pages 725-743.
    12. Javed, Muhammad Shahzad & Song, Aotian & Ma, Tao, 2019. "Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm," Energy, Elsevier, vol. 176(C), pages 704-717.
    13. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    14. Kaldellis, John K. & Kapsali, Marina & Kavadias, Kosmas A., 2014. "Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece," Renewable Energy, Elsevier, vol. 66(C), pages 612-624.
    15. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    16. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    17. AL-Rousan, Nadia & Isa, Nor Ashidi Mat & Desa, Mohd Khairunaz Mat, 2018. "Advances in solar photovoltaic tracking systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2548-2569.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Cao, Sunliang & You, Fengqi, 2024. "Experimental study and techno-enviro-economic analysis of pavement-integrated photovoltaic/thermal applications in different cities considering the ground influence," Energy, Elsevier, vol. 306(C).
    2. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    3. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Li, Zongyu & Wang, Yuhong, 2023. "Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement," Applied Energy, Elsevier, vol. 342(C).
    4. Ma, Tao & Guo, Zichang & Shen, Lu & Liu, Xing & Chen, Zhenwu & Zhou, Yong & Zhang, Xiaochun, 2021. "Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution," Applied Energy, Elsevier, vol. 298(C).
    5. Li, Fuxiang & Wu, Wei, 2022. "Coupled electrical-thermal performance estimation of photovoltaic devices: A transient multiphysics framework with robust parameter extraction and 3-D thermal analysis," Applied Energy, Elsevier, vol. 319(C).
    6. Limane, Badreddine & Ould-Lahoucine, Cherif & Diaf, Said, 2023. "Modeling and simulation of the thermal behavior and electrical performance of PV modules under different environment and operating conditions," Renewable Energy, Elsevier, vol. 219(P1).
    7. Keddouda, Abdelhak & Ihaddadene, Razika & Boukhari, Ali & Atia, Abdelmalek & Arıcı, Müslüm & Lebbihiat, Nacer & Ihaddadene, Nabila, 2024. "Experimentally validated thermal modeling for temperature prediction of photovoltaic modules under variable environmental conditions," Renewable Energy, Elsevier, vol. 231(C).
    8. Gu, Wenbo & Li, Senji & Liu, Xing & Chen, Zhenwu & Zhang, Xiaochun & Ma, Tao, 2021. "Experimental investigation of the bifacial photovoltaic module under real conditions," Renewable Energy, Elsevier, vol. 173(C), pages 1111-1122.
    9. Ali Kareem Abdulrazzaq & Balázs Plesz & György Bognár, 2020. "A Novel Method for Thermal Modelling of Photovoltaic Modules/Cells under Varying Environmental Conditions," Energies, MDPI, vol. 13(13), pages 1-23, June.
    10. Villemin, Thomas & Claverie, Rémy & Sawicki, Jean-Paul & Parent, Gilles, 2022. "Thermal characterization of a photovoltaic panel under controlled conditions," Renewable Energy, Elsevier, vol. 198(C), pages 28-40.
    11. Ma, Xun & Li, Ming & Peng, Ye & Sun, Linyao & Chen, Chuangye, 2022. "Development of thermo–electrical loss model for photovoltaic module with inhomogeneous temperature," Energy, Elsevier, vol. 248(C).
    12. Gu, Wenbo & Ma, Tao & Li, Meng & Shen, Lu & Zhang, Yijie, 2020. "A coupled optical-electrical-thermal model of the bifacial photovoltaic module," Applied Energy, Elsevier, vol. 258(C).
    13. Kapsalis, Vasileios & Maduta, Carmen & Skandalos, Nikolaos & Wang, Meng & Bhuvad, Sushant Suresh & D'Agostino, Delia & Ma, Tao & Raj, Uday & Parker, Danny & Peng, Jinqing & Karamanis, Dimitris, 2024. "Critical assessment of large-scale rooftop photovoltaics deployment in the global urban environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Mohammad Hassan Shahverdian & Saba Sedayevatan & Sajjad Latif Damavandi & Ali Sohani & Hoseyn Sayyaadi, 2022. "A Road Map to Detect the Foremost 3E Potential Areas for Installation of PV Façade Technology Using Multi-Criteria Decision Making," Sustainability, MDPI, vol. 14(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Kareem Abdulrazzaq & Balázs Plesz & György Bognár, 2020. "A Novel Method for Thermal Modelling of Photovoltaic Modules/Cells under Varying Environmental Conditions," Energies, MDPI, vol. 13(13), pages 1-23, June.
    2. Lau, K.Y. & Tan, C.W. & Yatim, A.H.M., 2018. "Effects of ambient temperatures, tilt angles, and orientations on hybrid photovoltaic/diesel systems under equatorial climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2625-2636.
    3. Slawomir Gulkowski, 2023. "Modeling and Experimental Studies of the Photovoltaic System Performance in Climate Conditions of Poland," Energies, MDPI, vol. 16(20), pages 1-16, October.
    4. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.
    5. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    6. Bahrami, Milad & Gavagsaz-Ghoachani, Roghayeh & Zandi, Majid & Phattanasak, Matheepot & Maranzanaa, Gaël & Nahid-Mobarakeh, Babak & Pierfederici, Serge & Meibody-Tabar, Farid, 2019. "Hybrid maximum power point tracking algorithm with improved dynamic performance," Renewable Energy, Elsevier, vol. 130(C), pages 982-991.
    7. Roberts, Justo José & Mendiburu Zevallos, Andrés A. & Cassula, Agnelo Marotta, 2017. "Assessment of photovoltaic performance models for system simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1104-1123.
    8. Boccalatte, Alessia & Thebault, Martin & Paolini, Riccardo & Fossa, Marco & Ramousse, Julien & Ménézo, Christophe & Santamouris, Mattheos, 2023. "Assessing the combined effects of local climate and mounting configuration on the electrical and thermal performance of photovoltaic systems. Application to the greater Sydney area," Renewable Energy, Elsevier, vol. 219(P1).
    9. Gong, Yujian & Wang, Zuo & Lai, Zeyu & Jiang, Minlin, 2021. "TVACPSO-assisted analysis of the effects of temperature and irradiance on the PV module performances," Energy, Elsevier, vol. 227(C).
    10. Li, Fuxiang & Wu, Wei, 2022. "Coupled electrical-thermal performance estimation of photovoltaic devices: A transient multiphysics framework with robust parameter extraction and 3-D thermal analysis," Applied Energy, Elsevier, vol. 319(C).
    11. Santiago, I. & Trillo-Montero, D. & Moreno-Garcia, I.M. & Pallarés-López, V. & Luna-Rodríguez, J.J., 2018. "Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 70-89.
    12. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    13. Kaplanis, S. & Kaplani, E. & Kaldellis, J.K., 2022. "PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency a," Renewable Energy, Elsevier, vol. 181(C), pages 235-249.
    14. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    15. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    16. Mahmoudimehr, Javad & Shabani, Masoume, 2018. "Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran," Renewable Energy, Elsevier, vol. 115(C), pages 238-251.
    17. Chikh, Madjid & Berkane, Smain & Mahrane, Achour & Sellami, Rabah & Yassaa, Noureddine, 2021. "Performance assessment of a 400 kWp multi- technology photovoltaic grid-connected pilot plant in arid region of Algeria," Renewable Energy, Elsevier, vol. 172(C), pages 488-501.
    18. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    19. D'Orazio, M. & Di Perna, C. & Di Giuseppe, E., 2014. "Experimental operating cell temperature assessment of BIPV with different installation configurations on roofs under Mediterranean climate," Renewable Energy, Elsevier, vol. 68(C), pages 378-396.
    20. Muhammad Aftab Rafiq & Liguo Zhang & Chih-Chun Kung, 2022. "A Techno-Economic Analysis of Solar Energy Developmental Under Competing Technologies: A Case Study in Jiangxi, China," SAGE Open, , vol. 12(2), pages 21582440221, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.