IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp1275-1288.html
   My bibliography  Save this article

Multi-objective control of transient process of hydropower plant with two turbines sharing one penstock under combined operating conditions

Author

Listed:
  • Cui, Zilong
  • Guo, Wencheng

Abstract

This paper studies the multi-objective control of transient process of hydropower plant with two turbines sharing one penstock under combined operating conditions (COCs). Firstly, the model of transient process of hydropower plant is presented. The illustration of four COCs is provided. Then, the multi-objective control strategy of transient process under COCs is designed. The decision variables and objective functions are selected. The control scheme and decision method are determined. Finally, the most favourable superposition time and the most unfavourable superposition time under COCs are determined. The results indicate that the objective function contains three objectives, i.e. spiral case outlet pressures, draft tube inlet pressures and rotational speeds of turbines. The most favourable superposition time under COC-1 can realize that the objectives reach control requirements simultaneously. The most favourable superposition time under COC-2 and the most unfavourable superposition time under COC-1 and COC-2 cannot realize that the objectives reach control requirements simultaneously, but can balance the objectives to the maximum extent. It is unnecessary to distinguish the most favourable superposition time and the most unfavourable superposition time strictly under COC-3. There is no the concepts of the most favourable superposition time and the most unfavourable superposition time under COC-4.

Suggested Citation

  • Cui, Zilong & Guo, Wencheng, 2023. "Multi-objective control of transient process of hydropower plant with two turbines sharing one penstock under combined operating conditions," Renewable Energy, Elsevier, vol. 206(C), pages 1275-1288.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:1275-1288
    DOI: 10.1016/j.renene.2023.02.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123002859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rezghi, Ali & Riasi, Alireza, 2018. "The interaction effect of hydraulic transient conditions of two parallel pump-turbine units in a pumped-storage power plant with considering “S-shaped” instability region: Numerical simulation," Renewable Energy, Elsevier, vol. 118(C), pages 896-908.
    2. Sheng Chen & Jian Zhang & Gaohui Li & Xiaodong Yu, 2019. "Influence Mechanism of Geometric Characteristics of Water Conveyance System on Extreme Water Hammer during Load Rejection in Pumped Storage Plants," Energies, MDPI, vol. 12(15), pages 1-22, July.
    3. Loukil, Taicir & Teghem, Jacques & Fortemps, Philippe, 2007. "A multi-objective production scheduling case study solved by simulated annealing," European Journal of Operational Research, Elsevier, vol. 179(3), pages 709-722, June.
    4. Lai, Xinjie & Li, Chaoshun & Zhou, Jianzhong & Zhang, Yongchuan & Li, Yonggang, 2020. "A multi-objective optimization strategy for the optimal control scheme of pumped hydropower systems under successive load rejections," Applied Energy, Elsevier, vol. 261(C).
    5. Liu, Baonan & Zhou, Jianzhong & Xu, Yanhe & Lai, Xinjie & Shi, Yousong & Li, Mengyao, 2022. "An optimization decision-making framework for the optimal operation strategy of pumped storage hydropower system under extreme conditions," Renewable Energy, Elsevier, vol. 182(C), pages 254-273.
    6. Guo, Wencheng & Yang, Jiandong & Teng, Yi, 2017. "Surge wave characteristics for hydropower station with upstream series double surge tanks in load rejection transient," Renewable Energy, Elsevier, vol. 108(C), pages 488-501.
    7. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    8. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    9. Liu, Demin & Zhang, Xiaoxi & Yang, Zhiyan & Liu, Ke & Cheng, Yongguang, 2021. "Evaluating the pressure fluctuations during load rejection of two pump-turbines in a prototype pumped-storage system by using 1D-3D coupled simulation," Renewable Energy, Elsevier, vol. 171(C), pages 1276-1289.
    10. Zhang, Hao & Guo, Pengcheng & Sun, Longgang, 2020. "Transient analysis of a multi-unit pumped storage system during load rejection process," Renewable Energy, Elsevier, vol. 152(C), pages 34-43.
    11. Lei, Liuwei & Li, Feng & Kheav, Kimleng & Jiang, Wei & Luo, Xingqi & Patelli, Edoardo & Xu, Beibei & Chen, Diyi, 2021. "A start-up optimization strategy of a hydroelectric generating system: From a symmetrical structure to asymmetric structure on diversion pipes," Renewable Energy, Elsevier, vol. 180(C), pages 1148-1165.
    12. Xu, Xinyu & Guo, Wencheng, 2020. "Stability of speed regulating system of hydropower station with surge tank considering nonlinear turbine characteristics," Renewable Energy, Elsevier, vol. 162(C), pages 960-972.
    13. Wencheng Guo & Daoyi Zhu, 2018. "A Review of the Transient Process and Control for a Hydropower Station with a Super Long Headrace Tunnel," Energies, MDPI, vol. 11(11), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jian & Qiu, Weixin & Wang, Qinyi & Yao, Tianyu & Hu, Chao & Liu, Yi, 2024. "Extreme water level of surge chamber in hydropower plant under combined operating conditions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan, Xinyao & Jin, Jiahui & Xu, Beibei & Chen, Diyi & Egusquiza, Mònica & Kim, Jin-Hyuk & Egusquiza, Eduard & Jafar, Nejadali & Xu, Lin & Kuang, Yuan, 2022. "Physical model test and parametric optimization of a hydroelectric generating system with a coaxial shaft surge tank," Renewable Energy, Elsevier, vol. 200(C), pages 880-899.
    2. Ma, Weichao & Yan, Wenjie & Yang, Jiebin & He, Xianghui & Yang, Jiandong & Yang, Weijia, 2022. "Experimental and numerical investigation on head losses of a complex throttled surge tank for refined hydropower plant simulation," Renewable Energy, Elsevier, vol. 186(C), pages 264-279.
    3. Wencheng Guo & Yang Liu & Fangle Qu & Xinyu Xu, 2020. "A Review of Critical Stable Sectional Areas for the Surge Tanks of Hydropower Stations," Energies, MDPI, vol. 13(23), pages 1-25, December.
    4. Wang, Le & Guo, Wencheng, 2022. "Nonlinear hydraulic coupling characteristics and energy conversion mechanism of pipeline - surge tank system of hydropower station with super long headrace tunnel," Renewable Energy, Elsevier, vol. 199(C), pages 1345-1360.
    5. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    6. Zhang, Jian & Qiu, Weixin & Wang, Qinyi & Yao, Tianyu & Hu, Chao & Liu, Yi, 2024. "Extreme water level of surge chamber in hydropower plant under combined operating conditions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    7. Gongcheng Liu & Xudi Qiu & Jiayi Ma & Diyi Chen & Xiao Liang, 2022. "Influence of Flexible Generation Mode on the Stability of Hydropower Generation System: Stability Assessment of Part-Load Operation," Energies, MDPI, vol. 15(11), pages 1-19, May.
    8. Zhu, Daoyi & Guo, Wencheng, 2019. "Critical sectional area of surge chamber considering nonlinearity of head loss of diversion tunnel and steady output of turbine," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 165-172.
    9. Yi Liu & Xiaodong Yu & Xinlei Guo & Wenlong Zhao & Sheng Chen, 2023. "Operational Stability of Hydropower Plant with Upstream and Downstream Surge Chambers during Small Load Disturbance," Energies, MDPI, vol. 16(11), pages 1-13, June.
    10. Shi, Yousong & Zhou, Jianzhong & Guo, Wencheng & Zheng, Yang & Li, Chaoshun & Zhang, Yongchuan, 2022. "Nonlinear dynamic characteristics analysis and adaptive avoid vortex-coordinated optimal control of hydropower units under grid connection," Renewable Energy, Elsevier, vol. 200(C), pages 911-930.
    11. Chen, Zi & Guo, Wencheng, 2023. "Stability and dynamic response of two-stage hydropower stations cascaded by regulating reservoir," Renewable Energy, Elsevier, vol. 202(C), pages 651-666.
    12. Xu, Pan & Fu, Wenlong & Lu, Qipeng & Zhang, Shihai & Wang, Renming & Meng, Jiaxin, 2023. "Stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel and upstream surge tank considering nonlinear hydro-turbine characteristics," Renewable Energy, Elsevier, vol. 210(C), pages 556-574.
    13. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    14. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    15. Guo, Wencheng & Peng, Zhiyuan, 2019. "Hydropower system operation stability considering the coupling effect of water potential energy in surge tank and power grid," Renewable Energy, Elsevier, vol. 134(C), pages 846-861.
    16. Jiae Zhang & Jianjun Yang, 2016. "Flexible job-shop scheduling with flexible workdays, preemption, overlapping in operations and satisfaction criteria: an industrial application," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4894-4918, August.
    17. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R & M. Calle, 2020. "Scheduling a dual-resource flexible job shop with makespan and due date-related criteria," Annals of Operations Research, Springer, vol. 291(1), pages 5-35, August.
    18. Xijun Zhou & Yongjin Ye & Xianyu Zhang & Xiuwei Yang & Haijun Wang, 2022. "Refined 1D–3D Coupling for High-Frequency Forced Vibration Analysis in Hydraulic Systems," Energies, MDPI, vol. 15(16), pages 1-18, August.
    19. Wei Huang & Jiming Ma & Xinlei Guo & Huokun Li & Jiazhen Li & Gang Wang, 2021. "Stability Criterion for Mass Oscillation in the Surge Tank of a Hydropower Station Considering Velocity Head and Throttle Loss," Energies, MDPI, vol. 14(17), pages 1-19, August.
    20. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:1275-1288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.