IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v179y2007i3p709-722.html
   My bibliography  Save this article

A multi-objective production scheduling case study solved by simulated annealing

Author

Listed:
  • Loukil, Taicir
  • Teghem, Jacques
  • Fortemps, Philippe

Abstract

No abstract is available for this item.

Suggested Citation

  • Loukil, Taicir & Teghem, Jacques & Fortemps, Philippe, 2007. "A multi-objective production scheduling case study solved by simulated annealing," European Journal of Operational Research, Elsevier, vol. 179(3), pages 709-722, June.
  • Handle: RePEc:eee:ejores:v:179:y:2007:i:3:p:709-722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00731-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kacem, Imed & Hammadi, Slim & Borne, Pierre, 2002. "Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 60(3), pages 245-276.
    2. Stéphane Dauzère-Pérès & Jan Paulli, 1997. "An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search," Annals of Operations Research, Springer, vol. 70(0), pages 281-306, April.
    3. Loukil, T. & Teghem, J. & Tuyttens, D., 2005. "Solving multi-objective production scheduling problems using metaheuristics," European Journal of Operational Research, Elsevier, vol. 161(1), pages 42-61, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamssaouet, Karim & Dauzère-Pérès, Stéphane & Knopp, Sebastian & Bitar, Abdoul & Yugma, Claude, 2022. "Multiobjective optimization for complex flexible job-shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 296(1), pages 87-100.
    2. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    3. Jiae Zhang & Jianjun Yang, 2016. "Flexible job-shop scheduling with flexible workdays, preemption, overlapping in operations and satisfaction criteria: an industrial application," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4894-4918, August.
    4. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R & M. Calle, 2020. "Scheduling a dual-resource flexible job shop with makespan and due date-related criteria," Annals of Operations Research, Springer, vol. 291(1), pages 5-35, August.
    5. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha, 2014. "Integrating noncyclical preventive maintenance scheduling and production planning for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 175-186.
    6. K. Devika & A. Jafarian & A. Hassanzadeh & R. Khodaverdi, 2016. "Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics," Annals of Operations Research, Springer, vol. 242(2), pages 457-487, July.
    7. Z.H. Che, 2012. "A hybrid algorithm for fuzzy clustering," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 6(1), pages 50-67.
    8. Hong-Sen Yan & Wen-Chao Li, 2017. "A multi-objective scheduling algorithm with self-evolutionary feature for job-shop-like knowledgeable manufacturing cell," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 337-351, February.
    9. Hu, Mengqi & Weir, Jeffery D. & Wu, Teresa, 2012. "Decentralized operation strategies for an integrated building energy system using a memetic algorithm," European Journal of Operational Research, Elsevier, vol. 217(1), pages 185-197.
    10. Oğuzhan Ahmet Arık, 2022. "Additive manufacturing scheduling problem considering assembly operations of parts," Operational Research, Springer, vol. 22(3), pages 3063-3087, July.
    11. Hsu, Chaug-Ing & Li, Hui-Chieh, 2009. "An integrated plant capacity and production planning model for high-tech manufacturing firms with economies of scale," International Journal of Production Economics, Elsevier, vol. 118(2), pages 486-500, April.
    12. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    13. Cui, Zilong & Guo, Wencheng, 2023. "Multi-objective control of transient process of hydropower plant with two turbines sharing one penstock under combined operating conditions," Renewable Energy, Elsevier, vol. 206(C), pages 1275-1288.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiuli Wu & Shaomin Wu, 2017. "An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1441-1457, August.
    2. Yiyi Xu & M’hammed Sahnoun & Fouad Ben Abdelaziz & David Baudry, 2022. "A simulated multi-objective model for flexible job shop transportation scheduling," Annals of Operations Research, Springer, vol. 311(2), pages 899-920, April.
    3. Miguel A. Fernández Pérez & Fernanda M. P. Raupp, 2016. "A Newton-based heuristic algorithm for multi-objective flexible job-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 409-416, April.
    4. Vilcot, Geoffrey & Billaut, Jean-Charles, 2008. "A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 190(2), pages 398-411, October.
    5. Zhang, Sicheng & Li, Xiang & Zhang, Bowen & Wang, Shouyang, 2020. "Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system," European Journal of Operational Research, Elsevier, vol. 283(2), pages 441-460.
    6. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    7. Li-Ning Xing & Ying-Wu Chen & Ke-Wei Yang, 2011. "Multi-population interactive coevolutionary algorithm for flexible job shop scheduling problems," Computational Optimization and Applications, Springer, vol. 48(1), pages 139-155, January.
    8. Po-Hsiang Lu & Muh-Cherng Wu & Hao Tan & Yong-Han Peng & Chen-Fu Chen, 2018. "A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 19-34, January.
    9. Abdelmaguid, Tamer F., 2015. "A neighborhood search function for flexible job shop scheduling with separable sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 188-203.
    10. Alper Türkyılmaz & Özlem Şenvar & İrem Ünal & Serol Bulkan, 2020. "A research survey: heuristic approaches for solving multi objective flexible job shop problems," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1949-1983, December.
    11. Moslehi, Ghasem & Mahnam, Mehdi, 2011. "A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local search," International Journal of Production Economics, Elsevier, vol. 129(1), pages 14-22, January.
    12. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    13. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    14. Jacomine Grobler & Andries Engelbrecht & Schalk Kok & Sarma Yadavalli, 2010. "Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time," Annals of Operations Research, Springer, vol. 180(1), pages 165-196, November.
    15. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    16. Baykasoglu, Adil & ÖzbakIr, Lale, 2010. "Analyzing the effect of dispatching rules on the scheduling performance through grammar based flexible scheduling system," International Journal of Production Economics, Elsevier, vol. 124(2), pages 369-381, April.
    17. Balasubramanian, Hari & Fowler, John & Keha, Ahmet & Pfund, Michele, 2009. "Scheduling interfering job sets on parallel machines," European Journal of Operational Research, Elsevier, vol. 199(1), pages 55-67, November.
    18. Nicolás Álvarez-Gil & Rafael Rosillo & David de la Fuente & Raúl Pino, 2021. "A discrete firefly algorithm for solving the flexible job-shop scheduling problem in a make-to-order manufacturing system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1353-1374, December.
    19. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.
    20. Pham, Dinh-Nguyen & Klinkert, Andreas, 2008. "Surgical case scheduling as a generalized job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1011-1025, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:179:y:2007:i:3:p:709-722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.