IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp254-273.html
   My bibliography  Save this article

An optimization decision-making framework for the optimal operation strategy of pumped storage hydropower system under extreme conditions

Author

Listed:
  • Liu, Baonan
  • Zhou, Jianzhong
  • Xu, Yanhe
  • Lai, Xinjie
  • Shi, Yousong
  • Li, Mengyao

Abstract

Frequent condition changes of pumped storage hydropower system make it inclined to stuck in extreme energy conversion process, posing great threats to steady operation. This paper proposes a comprehensive framework to specify optimal operation strategy for admirable transient process under extreme conditions. Three principles consist the framework, the refined model of successive load rejection is primarily established, which accedes time-varying and strong nonlinear characteristics and accurately grasps the trait of successive load rejection. Furthermore, an improved genetic algorithm with excellent capabilities of exploration and exploitation is proposed, multiple control schemes are investigated with variations of control parameters. Whereafter, a hierarchical decision-making structure of operation strategy considering qualitative and quantitative indicators is firstly constructed, the intuitionistic fuzzy analytic hierarchy process is innovatively introduced to specify optimal scheme. The originality of the framework lies in comprehensiveness and completeness. Multiple complexities of refined model, multiple schemes of optimization strategy, multiple determinants of decision-making are fully considered. Testifying to real cases, the optimal strategy can effectively improve water pressure indicators of volute and draft tube by at most 64.4 m and 32.52 m. These results highlight the effectiveness and availability of the proposed framework for sustaining safe operation simultaneously reducing investments of pumped storage hydropower systems.

Suggested Citation

  • Liu, Baonan & Zhou, Jianzhong & Xu, Yanhe & Lai, Xinjie & Shi, Yousong & Li, Mengyao, 2022. "An optimization decision-making framework for the optimal operation strategy of pumped storage hydropower system under extreme conditions," Renewable Energy, Elsevier, vol. 182(C), pages 254-273.
  • Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:254-273
    DOI: 10.1016/j.renene.2021.09.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121014075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    2. Lai, Xinjie & Li, Chaoshun & Zhou, Jianzhong & Zhang, Nan, 2019. "Multi-objective optimization of the closure law of guide vanes for pumped storage units," Renewable Energy, Elsevier, vol. 139(C), pages 302-312.
    3. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Khiadani, Mehdi & Das, Choton K., 2019. "An improved mathematical model for a pumped hydro storage system considering electrical, mechanical, and hydraulic losses," Applied Energy, Elsevier, vol. 247(C), pages 228-236.
    4. Zuo, Zhigang & Fan, Honggang & Liu, Shuhong & Wu, Yulin, 2016. "S-shaped characteristics on the performance curves of pump-turbines in turbine mode – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 836-851.
    5. Chen, Huixiang & Zhou, Daqing & Kan, Kan & Guo, Junxun & Zheng, Yuan & Binama, Maxime & Xu, Zhe & Feng, Jiangang, 2021. "Transient characteristics during the co-closing guide vanes and runner blades of a bulb turbine in load rejection process," Renewable Energy, Elsevier, vol. 165(P2), pages 28-41.
    6. Jianzhong Zhou & Zhigao Zhao & Chu Zhang & Chaoshun Li & Yanhe Xu, 2017. "A Real-Time Accurate Model and Its Predictive Fuzzy PID Controller for Pumped Storage Unit via Error Compensation," Energies, MDPI, vol. 11(1), pages 1-24, December.
    7. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    8. Jiawei Ye & Wei Zeng & Zhigao Zhao & Jiebin Yang & Jiandong Yang, 2020. "Optimization of Pump Turbine Closing Operation to Minimize Water Hammer and Pulsating Pressures During Load Rejection," Energies, MDPI, vol. 13(4), pages 1-18, February.
    9. Zeng, Wei & Yang, Jiandong & Tang, Renbo & Yang, Weijia, 2016. "Extreme water-hammer pressure during one-after-another load shedding in pumped-storage stations," Renewable Energy, Elsevier, vol. 99(C), pages 35-44.
    10. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    11. Pérez-Díaz, Juan I. & Chazarra, M. & García-González, J. & Cavazzini, G. & Stoppato, A., 2015. "Trends and challenges in the operation of pumped-storage hydropower plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 767-784.
    12. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    13. Li, Huanhuan & Chen, Diyi & Zhang, Hao & Wu, Changzhi & Wang, Xiangyu, 2017. "Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing," Applied Energy, Elsevier, vol. 185(P1), pages 244-253.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Zilong & Guo, Wencheng, 2023. "Multi-objective control of transient process of hydropower plant with two turbines sharing one penstock under combined operating conditions," Renewable Energy, Elsevier, vol. 206(C), pages 1275-1288.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Xinjie & Li, Chaoshun & Zhou, Jianzhong & Zhang, Yongchuan & Li, Yonggang, 2020. "A multi-objective optimization strategy for the optimal control scheme of pumped hydropower systems under successive load rejections," Applied Energy, Elsevier, vol. 261(C).
    2. Lei, Liuwei & Li, Feng & Kheav, Kimleng & Jiang, Wei & Luo, Xingqi & Patelli, Edoardo & Xu, Beibei & Chen, Diyi, 2021. "A start-up optimization strategy of a hydroelectric generating system: From a symmetrical structure to asymmetric structure on diversion pipes," Renewable Energy, Elsevier, vol. 180(C), pages 1148-1165.
    3. Mensah, Johnson Herlich Roslee & Santos, Ivan Felipe Silva dos & Raimundo, Danielle Rodrigues & Costa de Oliveira Botan, Maria Cláudia & Barros, Regina Mambeli & Tiago Filho, Geraldo Lucio, 2022. "Energy and economic study of using Pumped Hydropower Storage with renewable resources to recover the Furnas reservoir," Renewable Energy, Elsevier, vol. 199(C), pages 320-334.
    4. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    5. Javier Menéndez & Jesús M. Fernández-Oro & Mónica Galdo & Jorge Loredo, 2020. "Transient Simulation of Underground Pumped Storage Hydropower Plants Operating in Pumping Mode," Energies, MDPI, vol. 13(7), pages 1-17, April.
    6. Jiawei Ye & Wei Zeng & Zhigao Zhao & Jiebin Yang & Jiandong Yang, 2020. "Optimization of Pump Turbine Closing Operation to Minimize Water Hammer and Pulsating Pressures During Load Rejection," Energies, MDPI, vol. 13(4), pages 1-18, February.
    7. Wang, Wenjie & Tai, Geyuan & Pei, Ji & Pavesi, Giorgio & Yuan, Shouqi, 2022. "Numerical investigation of the effect of the closure law of wicket gates on the transient characteristics of pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 194(C), pages 719-733.
    8. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    9. Stenzel, Peter & Linssen, Jochen, 2016. "Concept and potential of pumped hydro storage in federal waterways," Applied Energy, Elsevier, vol. 162(C), pages 486-493.
    10. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    11. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    12. Pang, Shujiao & Zhu, Baoshan & Shen, Yunde & Chen, Zhenmu, 2024. "Study on suppression of cavitating vortex rope on pump-turbines by J-groove," Applied Energy, Elsevier, vol. 360(C).
    13. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Asmaa I. Abdelfattah & Mostafa F. Shaaban & Ahmed H. Osman & Abdelfatah Ali, 2023. "Optimal Management of Seasonal Pumped Hydro Storage System for Peak Shaving," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    15. Manikas, Konstantinos & Skroufouta, Sofia & Baltas, Evangelos, 2024. "Simulation and evaluation of pumped hydropower storage (PHPS) system at Kastraki reservoir," Renewable Energy, Elsevier, vol. 222(C).
    16. Emmanouil, Stergios & Nikolopoulos, Efthymios I. & François, Baptiste & Brown, Casey & Anagnostou, Emmanouil N., 2021. "Evaluating existing water supply reservoirs as small-scale pumped hydroelectric storage options – A case study in Connecticut," Energy, Elsevier, vol. 226(C).
    17. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Kougias, Ioannis & Szabó, Sándor, 2017. "Pumped hydroelectric storage utilization assessment: Forerunner of renewable energy integration or Trojan horse?," Energy, Elsevier, vol. 140(P1), pages 318-329.
    19. Benato, Alberto, 2017. "Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system," Energy, Elsevier, vol. 138(C), pages 419-436.
    20. Nasir, Jehanzeb & Javed, Adeel & Ali, Majid & Ullah, Kafait & Kazmi, Syed Ali Abbas, 2022. "Capacity optimization of pumped storage hydropower and its impact on an integrated conventional hydropower plant operation," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:254-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.