IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v118y2018icp896-908.html
   My bibliography  Save this article

The interaction effect of hydraulic transient conditions of two parallel pump-turbine units in a pumped-storage power plant with considering “S-shaped” instability region: Numerical simulation

Author

Listed:
  • Rezghi, Ali
  • Riasi, Alireza

Abstract

In this paper the interaction effect of hydraulic transient flow for two parallel pump-turbine units which are installed on the same penstock, has been numerically investigated. Siah Bishe pumped storage power plant located at the north of Iran, has been considered as the case study. At First, simultaneous emergency shutdown of two units is simulated. Then the state in which the load of unit 1 is rejected while the unit 2 operates normally, has been studied. For this purpose, the governing equations of transient flow in waterways are solved by using the method of characteristics. Since for the same unit speed in “S-shaped” region of pump-turbine characteristic curves, three different values for unit discharge and unit torque are available, the characteristic curves are implemented in the code as the polar form by using modified Suter transformations. Results show that in the case of two units’ emergency shutdown, spiral case pressure rise and draft tube pressure reduction, increase by 6.9% and 54.4% in comparison with the one unit emergency shutdown. In the second case, the maximum pressure in the spiral cases and the minimum pressure in the draft tubes decrease by 1.2% and 6.4% respectively. In the recent case, the speed-control governor of unit 2 improves the transient state of the whole system by the wicket gates adjusting.

Suggested Citation

  • Rezghi, Ali & Riasi, Alireza, 2018. "The interaction effect of hydraulic transient conditions of two parallel pump-turbine units in a pumped-storage power plant with considering “S-shaped” instability region: Numerical simulation," Renewable Energy, Elsevier, vol. 118(C), pages 896-908.
  • Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:896-908
    DOI: 10.1016/j.renene.2017.11.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117311680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.11.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuo, Zhigang & Fan, Honggang & Liu, Shuhong & Wu, Yulin, 2016. "S-shaped characteristics on the performance curves of pump-turbines in turbine mode – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 836-851.
    2. Martínez-Lucas, Guillermo & Sarasúa, José Ignacio & Sánchez-Fernández, José Ángel & Wilhelmi, José Román, 2016. "Frequency control support of a wind-solar isolated system by a hydropower plant with long tail-race tunnel," Renewable Energy, Elsevier, vol. 90(C), pages 362-376.
    3. Rezghi, A. & Riasi, A., 2016. "Sensitivity analysis of transient flow of two parallel pump-turbines operating at runaway," Renewable Energy, Elsevier, vol. 86(C), pages 611-622.
    4. Zeng, Wei & Yang, Jiandong & Tang, Renbo & Yang, Weijia, 2016. "Extreme water-hammer pressure during one-after-another load shedding in pumped-storage stations," Renewable Energy, Elsevier, vol. 99(C), pages 35-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cavazzini, Giovanna & Houdeline, Jean-Bernard & Pavesi, Giorgio & Teller, Olivier & Ardizzon, Guido, 2018. "Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 399-409.
    2. Ge Zhao & Wei Li & Jinsong Zhu, 2019. "A Numerical Investigation of the Influence of Geometric Parameters on the Performance of a Multi-Channel Confluent Water Supply," Energies, MDPI, vol. 12(22), pages 1-21, November.
    3. Shengli Liao & Hongye Zhao & Gang Li & Benxi Liu, 2019. "Short-Term Load Dispatching Method for a Diversion Hydropower Plant with Multiple Turbines in One Tunnel Using a Two-Stage Model," Energies, MDPI, vol. 12(8), pages 1-18, April.
    4. Lei Zhang & Jian Zhang & Xiaodong Yu & Jiawen Lv & Xiaoying Zhang, 2019. "Transient Simulation for a Pumped Storage Power Plant Considering Pressure Pulsation Based on Field Test," Energies, MDPI, vol. 12(13), pages 1-16, June.
    5. Hu, Jinhong & Yang, Jiebin & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2021. "Hydraulic interaction of two parallel pump-turbines in constant-speed oscillation: Measurement, simulation, and sensitivity analysis," Renewable Energy, Elsevier, vol. 176(C), pages 269-279.
    6. Daqing Zhou & Huixiang Chen & Yuan Zheng & Kan Kan & An Yu & Maxime Binama, 2019. "Development and Numerical Performance Analysis of a Pump Directly Driven by a Hydrokinetic Turbine," Energies, MDPI, vol. 12(22), pages 1-20, November.
    7. Xu, Beibei & Luo, Xingqi & Egusquiza, Mònica & Ye, Wei & Liu, Jing & Egusquiza, Eduard & Chen, Diyi & Guo, Pengcheng, 2021. "Nonlinear modal interaction analysis and vibration characteristics of a francis hydro-turbine generator unit," Renewable Energy, Elsevier, vol. 168(C), pages 854-864.
    8. Sheng Chen & Jian Zhang & Gaohui Li & Xiaodong Yu, 2019. "Influence Mechanism of Geometric Characteristics of Water Conveyance System on Extreme Water Hammer during Load Rejection in Pumped Storage Plants," Energies, MDPI, vol. 12(15), pages 1-22, July.
    9. Cui, Zilong & Guo, Wencheng, 2023. "Multi-objective control of transient process of hydropower plant with two turbines sharing one penstock under combined operating conditions," Renewable Energy, Elsevier, vol. 206(C), pages 1275-1288.
    10. Yonggang Li & Jinjiao Hou & Juan Gu & Chaoshun Li & Yanhe Xu, 2022. "Dynamic Characteristics and Successive Start-Up Control Strategy Optimization of Pumped Storage Units under Low-Head Extreme Conditions," Energies, MDPI, vol. 15(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    2. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    3. Hu, Jinhong & Yang, Jiebin & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2021. "Hydraulic interaction of two parallel pump-turbines in constant-speed oscillation: Measurement, simulation, and sensitivity analysis," Renewable Energy, Elsevier, vol. 176(C), pages 269-279.
    4. Lei, Liuwei & Li, Feng & Kheav, Kimleng & Jiang, Wei & Luo, Xingqi & Patelli, Edoardo & Xu, Beibei & Chen, Diyi, 2021. "A start-up optimization strategy of a hydroelectric generating system: From a symmetrical structure to asymmetric structure on diversion pipes," Renewable Energy, Elsevier, vol. 180(C), pages 1148-1165.
    5. Li, Deyou & Wang, Hongjie & Li, Zhenggui & Nielsen, Torbjørn Kristian & Goyal, Rahul & Wei, Xianzhu & Qin, Daqing, 2018. "Transient characteristics during the closure of guide vanes in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 118(C), pages 973-983.
    6. Zhang, Wenwu & Chen, Zhenmu & Zhu, Baoshan & Zhang, Fei, 2020. "Pressure fluctuation and flow instability in S-shaped region of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 154(C), pages 826-840.
    7. Lu, Jie & Qian, Zhongdong & Lee, Young-Ho, 2021. "Numerical investigation of unsteady characteristics of a pump turbine under runaway condition," Renewable Energy, Elsevier, vol. 169(C), pages 905-924.
    8. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    9. Liu, Baonan & Zhou, Jianzhong & Xu, Yanhe & Lai, Xinjie & Shi, Yousong & Li, Mengyao, 2022. "An optimization decision-making framework for the optimal operation strategy of pumped storage hydropower system under extreme conditions," Renewable Energy, Elsevier, vol. 182(C), pages 254-273.
    10. Sheng Chen & Jian Zhang & Gaohui Li & Xiaodong Yu, 2019. "Influence Mechanism of Geometric Characteristics of Water Conveyance System on Extreme Water Hammer during Load Rejection in Pumped Storage Plants," Energies, MDPI, vol. 12(15), pages 1-22, July.
    11. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    12. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    13. José Ignacio Sarasúa & Guillermo Martínez-Lucas & Carlos A. Platero & José Ángel Sánchez-Fernández, 2018. "Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System," Energies, MDPI, vol. 11(11), pages 1-17, October.
    14. Ma, Zhe & Zhu, Baoshan, 2020. "Pressure fluctuations in vaneless space of pump-turbines with large blade lean runners in the S- shaped region," Renewable Energy, Elsevier, vol. 153(C), pages 1283-1295.
    15. Qin, Yonglin & Li, Deyou & Wang, Hongjie & Liu, Zhansheng & Wei, Xianzhu & Wang, Xiaohang & Yang, Weibin, 2023. "Comprehensive hydraulic performance improvement in a pump-turbine: An experimental investigation," Energy, Elsevier, vol. 284(C).
    16. Fu, Jianing & Yu, Xiangyang & Gao, Chunyang & Cui, Junda & Li, Youting, 2022. "Nonsingular fast terminal control for the DFIG-based variable-speed hydro-unit," Energy, Elsevier, vol. 244(PA).
    17. Matthew, George Jr. & Nuttall, William J. & Mestel, Ben & Dooley, Laurence S., 2019. "Low carbon futures: Confronting electricity challenges on island systems," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 36-50.
    18. Martínez – Lucas, Guillermo & Sarasua, José Ignacio & Fernández – Guillamón, Ana & Molina – García, Ángel, 2021. "Combined hydro-wind frequency control scheme: Modal analysis and isolated power system case example," Renewable Energy, Elsevier, vol. 180(C), pages 1056-1072.
    19. Pang, Shujiao & Zhu, Baoshan & Shen, Yunde & Chen, Zhenmu, 2024. "Study on suppression of cavitating vortex rope on pump-turbines by J-groove," Applied Energy, Elsevier, vol. 360(C).
    20. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:118:y:2018:i:c:p:896-908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.