IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1387-d749248.html
   My bibliography  Save this article

Establishment and Solution of Four Variable Water Hammer Mathematical Model for Conveying Pipe

Author

Listed:
  • Jiehao Duan

    (College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
    CNPC Key Laboratory of Oil & Gas Storage and Transportation, Southwest Petroleum University, Chengdu 610500, China)

  • Changjun Li

    (College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
    CNPC Key Laboratory of Oil & Gas Storage and Transportation, Southwest Petroleum University, Chengdu 610500, China)

  • Jin Jin

    (CCDC Downhole Service Company, Chengdu 610500, China)

Abstract

Transient flow in pipe is a much debated topic in the field of hydrodynamics. The water hammer effect caused by instantaneous valve closing is an important branch of transient flow. At present, the fluid density is regarded as a constant in the study of the water hammer effect in pipe. When there is gas in the pipe, the variation range of density is large, and the pressure-wave velocity should also change continuously along the pipe. This study considers the interaction between pipeline fluid motion and water hammer wave propagation based on the essence of water hammer, with the pressure, velocity, density and overflow area set as variables. A new set of water hammer calculation equations was deduced and solved numerically. The effects of different valve closing time, flow rate and gas content on pressure distribution and the water hammer effect were studied. It was found that with the increase in valve closing time, the maximum fluctuating pressure at the pipe end decreased, and the time of peak value also lagged behind. When the valve closing time increased from 5 s to 25 s, the difference in water hammer pressure was 0.72 MPa, and the difference in velocity fluctuation amplitude was 0.076 m/s. The findings confirm: the greater the flow, the greater the pressure change at the pipe end; the faster the speed change, the more obvious the water hammer effect. High-volume flows were greatly disturbed by instantaneous obstacles such as valve closing. With the increase of time, the pressure fluctuation gradually attenuated along the pipe length. The place with the greatest water hammer effect was near the valve. Under the coupling effect of time and tube length, the shorter the time and the shorter the tube length, the more obvious the pressure fluctuation. Findings also confirm: the larger the gas content, the smaller the fluctuation peak of pipe end pressure; the longer the water hammer cycle, the smaller the pressure-wave velocity. The actual pressure fluctuation value was obviously lower than that without gas, and the size of the pressure wave mainly depended on the gas content. When the gas content increased from 1% to 9%, the difference of water hammer pressure was 0.41 MPa.

Suggested Citation

  • Jiehao Duan & Changjun Li & Jin Jin, 2022. "Establishment and Solution of Four Variable Water Hammer Mathematical Model for Conveying Pipe," Energies, MDPI, vol. 15(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1387-:d:749248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheng Chen & Jian Zhang & Gaohui Li & Xiaodong Yu, 2019. "Influence Mechanism of Geometric Characteristics of Water Conveyance System on Extreme Water Hammer during Load Rejection in Pumped Storage Plants," Energies, MDPI, vol. 12(15), pages 1-22, July.
    2. Jiawei Ye & Wei Zeng & Zhigao Zhao & Jiebin Yang & Jiandong Yang, 2020. "Optimization of Pump Turbine Closing Operation to Minimize Water Hammer and Pulsating Pressures During Load Rejection," Energies, MDPI, vol. 13(4), pages 1-18, February.
    3. Jing Yang & Yue Lv & Dianhai Liu & Zhengwei Wang, 2021. "Pressure Analysis in the Draft Tube of a Pump-Turbine under Steady and Transient Conditions," Energies, MDPI, vol. 14(16), pages 1-13, August.
    4. Lei Zhang & Jian Zhang & Xiaodong Yu & Jiawen Lv & Xiaoying Zhang, 2019. "Transient Simulation for a Pumped Storage Power Plant Considering Pressure Pulsation Based on Field Test," Energies, MDPI, vol. 12(13), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun Zhu & Shengqi Yang & Yuanyuan Pu & Lijun Sun & Min Wang & Kun Du, 2023. "Advanced Progress of the Geo-Energy Technology in China," Energies, MDPI, vol. 16(19), pages 1-6, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    2. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    3. Liu, Baonan & Zhou, Jianzhong & Xu, Yanhe & Lai, Xinjie & Shi, Yousong & Li, Mengyao, 2022. "An optimization decision-making framework for the optimal operation strategy of pumped storage hydropower system under extreme conditions," Renewable Energy, Elsevier, vol. 182(C), pages 254-273.
    4. Jianyong Hu & Qingbo Wang & Zhenzhu Meng & Hongge Song & Bowen Chen & Hui Shen, 2023. "Numerical Study of the Internal Fluid Dynamics of Draft Tube in Seawater Pumped Storage Hydropower Plant," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    5. Jianxin Hu & Wenfeng Su & Ke Li & Kexin Wu & Ling Xue & Guolei He, 2023. "Transient Hydrodynamic Behavior of a Pump as Turbine with Varying Rotating Speed," Energies, MDPI, vol. 16(4), pages 1-17, February.
    6. Lei, Liuwei & Li, Feng & Kheav, Kimleng & Jiang, Wei & Luo, Xingqi & Patelli, Edoardo & Xu, Beibei & Chen, Diyi, 2021. "A start-up optimization strategy of a hydroelectric generating system: From a symmetrical structure to asymmetric structure on diversion pipes," Renewable Energy, Elsevier, vol. 180(C), pages 1148-1165.
    7. Ferenc Szodrai, 2020. "Heat Sink Shape and Topology Optimization with Pareto-Vector Length Optimization for Air Cooling," Energies, MDPI, vol. 13(7), pages 1-15, April.
    8. Javier Menéndez & Jesús M. Fernández-Oro & Mónica Galdo & Jorge Loredo, 2020. "Transient Simulation of Underground Pumped Storage Hydropower Plants Operating in Pumping Mode," Energies, MDPI, vol. 13(7), pages 1-17, April.
    9. Wang, Wenjie & Tai, Geyuan & Pei, Ji & Pavesi, Giorgio & Yuan, Shouqi, 2022. "Numerical investigation of the effect of the closure law of wicket gates on the transient characteristics of pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 194(C), pages 719-733.
    10. Alessandro Morabito & Jan Spriet & Elena Vagnoni & Patrick Hendrick, 2020. "Underground Pumped Storage Hydropower Case Studies in Belgium: Perspectives and Challenges," Energies, MDPI, vol. 13(15), pages 1-24, August.
    11. Cui, Zilong & Guo, Wencheng, 2023. "Multi-objective control of transient process of hydropower plant with two turbines sharing one penstock under combined operating conditions," Renewable Energy, Elsevier, vol. 206(C), pages 1275-1288.
    12. Sorin-Ioan Lupa & Martin Gagnon & Sebastian Muntean & Georges Abdul-Nour, 2022. "The Impact of Water Hammer on Hydraulic Power Units," Energies, MDPI, vol. 15(4), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1387-:d:749248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.