IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i16p4894-4918.html
   My bibliography  Save this article

Flexible job-shop scheduling with flexible workdays, preemption, overlapping in operations and satisfaction criteria: an industrial application

Author

Listed:
  • Jiae Zhang
  • Jianjun Yang

Abstract

This paper addresses a real scheduling problem, namely, a complex flexible job-shop scheduling problem (FJSP) with special characteristics (flexible workdays, preemption and overlapping in operations), where the objective is to maximise a satisfaction criterion defined through goal programming. To allow for flexible workdays, the solution representation of the classical FJSP is extended to consider overtime decisions and a sequence of time-cell states, which is used to model resource capability. A new temporal-constraint-handling method is proposed to solve the problem of overlapping in operations in a flexible-workday environment. Three solution methods are proposed to solve this scheduling problem: a heuristic method based on priority rules, a goal-guided tabu search (GGTS) and an extended genetic algorithm (EGA). In the GGTS, the neighbourhood functions are defined based on elimination approaches, and five possible neighbourhood functions ( N 0 ⊇ N 1 ⊇ N 2 ⊇ N 3 ⊇ N 4) are presented. The effectiveness and efficiency of the three solution methods are verified using dedicated benchmark instances. Computational simulations and comparisons indicate that the proposed N 4-based GGTS demonstrates performance competitive with that of the EGA and the GGTSs based on the other neighbourhood functions ( N 0, N 1, N 2 and N 3) for solving the scheduling problem.

Suggested Citation

  • Jiae Zhang & Jianjun Yang, 2016. "Flexible job-shop scheduling with flexible workdays, preemption, overlapping in operations and satisfaction criteria: an industrial application," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4894-4918, August.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:16:p:4894-4918
    DOI: 10.1080/00207543.2015.1134839
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1134839
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1134839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Rong-Hwa & Yang, Chang-Lin, 2008. "Overlapping production scheduling planning with multiple objectives--An ant colony approach," International Journal of Production Economics, Elsevier, vol. 115(1), pages 163-170, September.
    2. Huang, Rong-Hwa & Yang, Chang-Lin & Cheng, Wei-Che, 2013. "Flexible job shop scheduling with due window—a two-pheromone ant colony approach," International Journal of Production Economics, Elsevier, vol. 141(2), pages 685-697.
    3. José R. Correa & Martin Skutella & José Verschae, 2012. "The Power of Preemption on Unrelated Machines and Applications to Scheduling Orders," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 379-398, May.
    4. Bahroun, Z. & Campagne, J. -P. & Moalla, M., 2000. "The overlapping production planning: A new approach of bounded capacity management," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 21-36, March.
    5. Varela, Ramiro & Vela, Camino R. & Puente, Jorge & Gomez, Alberto, 2003. "A knowledge-based evolutionary strategy for scheduling problems with bottlenecks," European Journal of Operational Research, Elsevier, vol. 145(1), pages 57-71, February.
    6. Buscher, Udo & Shen, Liji, 2009. "An integrated tabu search algorithm for the lot streaming problem in job shops," European Journal of Operational Research, Elsevier, vol. 199(2), pages 385-399, December.
    7. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    8. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.
    9. Chen, Liang-Hsuan & Tsai, Feng-Chou, 2001. "Fuzzy goal programming with different importance and priorities," European Journal of Operational Research, Elsevier, vol. 133(3), pages 548-556, September.
    10. González, Miguel A. & Vela, Camino R. & Varela, Ramiro, 2015. "Scatter search with path relinking for the flexible job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 35-45.
    11. Loukil, Taicir & Teghem, Jacques & Fortemps, Philippe, 2007. "A multi-objective production scheduling case study solved by simulated annealing," European Journal of Operational Research, Elsevier, vol. 179(3), pages 709-722, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    2. Gregory A. Kasapidis & Dimitris C. Paraskevopoulos & Panagiotis P. Repoussis & Christos D. Tarantilis, 2021. "Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4044-4068, November.
    3. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    4. Julien Autuori & Faicel Hnaien & Farouk Yalaoui, 2016. "A mapping technique for better solution exploration: NSGA-II adaptation," Journal of Heuristics, Springer, vol. 22(1), pages 89-123, February.
    5. Liji Shen & Jatinder N. D. Gupta, 2018. "Family scheduling with batch availability in flow shops to minimize makespan," Journal of Scheduling, Springer, vol. 21(2), pages 235-249, April.
    6. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    7. Groflin, Heinz & Klinkert, Andreas, 2007. "Feasible insertions in job shop scheduling, short cycles and stable sets," European Journal of Operational Research, Elsevier, vol. 177(2), pages 763-785, March.
    8. Lunardi, Willian T. & Birgin, Ernesto G. & Ronconi, Débora P. & Voos, Holger, 2021. "Metaheuristics for the online printing shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 293(2), pages 419-441.
    9. Ho, Nhu Binh & Tay, Joc Cing & Lai, Edmund M.-K., 2007. "An effective architecture for learning and evolving flexible job-shop schedules," European Journal of Operational Research, Elsevier, vol. 179(2), pages 316-333, June.
    10. Shen, Liji & Dauzère-Pérès, Stéphane & Neufeld, Janis S., 2018. "Solving the flexible job shop scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(2), pages 503-516.
    11. Zhengcai Cao & Lijie Zhou & Biao Hu & Chengran Lin, 2019. "An Adaptive Scheduling Algorithm for Dynamic Jobs for Dealing with the Flexible Job Shop Scheduling Problem," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 299-309, June.
    12. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    13. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    14. Pempera, Jaroslaw & Smutnicki, Czeslaw, 2018. "Open shop cyclic scheduling," European Journal of Operational Research, Elsevier, vol. 269(2), pages 773-781.
    15. Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
    16. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    17. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    18. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    19. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    20. Ulrike Schneider, 2011. "A tabu search tutorial based on a real-world scheduling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(4), pages 467-493, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:16:p:4894-4918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.