IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v302y2021ics0306261921009387.html
   My bibliography  Save this article

Resilience-based restoration strategy optimization for interdependent gas and power networks

Author

Listed:
  • Sang, Maosheng
  • Ding, Yi
  • Bao, Minglei
  • Li, Siying
  • Ye, Chengjin
  • Fang, Youtong

Abstract

The ever-increasing interdependencies of gas and power transmission networks have made it possible for disruptions in one subnetwork to permeate to the connected ones and trigger widespread blackouts. One of the most critical issues is to restore the interdependent gas and power networks (IGPNs) to normal operation as soon as possible after complete blackouts. The interdependencies of gas and power networks, together with different operating characteristics bring about additional complexities to the formulation of restoration schemes. As a necessary and challenging task, restoration strategy optimization for IGPNs is tackled in this paper. Firstly, system functionality metrics are defined to characterize the real-time performance level, then resilience metrics are developed by capturing recovery features of system functionality. Secondly, the restoration sequence optimization model is developed to determine the restoration sequence of failed components to maximize resilience, in which restoration characteristics in terms of repair modes, repair time, and recovery costs are considered. To relieve the computational burden, the skeleton-network reconfiguration model is proposed to determine critical components to restore within limited resources. Moreover, linearization methods are utilized to transform models into mixed-integer linear programming problems. The results in test cases not only illustrate the effectiveness of the proposed approach to enhance the system resilience, but also illustrate the impacts of resources, crews, and repair modes on resilience, which help system operators to constitute restoration strategies quickly and develop resilience enhancement measures.

Suggested Citation

  • Sang, Maosheng & Ding, Yi & Bao, Minglei & Li, Siying & Ye, Chengjin & Fang, Youtong, 2021. "Resilience-based restoration strategy optimization for interdependent gas and power networks," Applied Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:appene:v:302:y:2021:i:c:s0306261921009387
    DOI: 10.1016/j.apenergy.2021.117560
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921009387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    2. Mehrjerdi, Hasan & Mahdavi, Sajad & Hemmati, Reza, 2021. "Resilience maximization through mobile battery storage and diesel DG in integrated electrical and heating networks," Energy, Elsevier, vol. 237(C).
    3. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Siano, Pierluigi, 2017. "An efficient linear model for optimal day ahead scheduling of CHP units in active distribution networks considering load commitment programs," Energy, Elsevier, vol. 139(C), pages 798-817.
    4. Beyza, Jesus & Ruiz-Paredes, Hector F. & Garcia-Paricio, Eduardo & Yusta, Jose M., 2020. "Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies," Sustainability, MDPI, vol. 11(23), pages 1-31, November.
    6. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions," Applied Energy, Elsevier, vol. 185(P1), pages 267-279.
    7. Liao, Shiwu & Yao, Wei & Han, Xingning & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & He, Haibo, 2019. "An improved two-stage optimization for network and load recovery during power system restoration," Applied Energy, Elsevier, vol. 249(C), pages 265-275.
    8. Moslehi, Salim & Reddy, T. Agami, 2018. "Sustainability of integrated energy systems: A performance-based resilience assessment methodology," Applied Energy, Elsevier, vol. 228(C), pages 487-498.
    9. Bao, Minglei & Ding, Yi & Sang, Maosheng & Li, Daqing & Shao, Changzheng & Yan, Jinyue, 2020. "Modeling and evaluating nodal resilience of multi-energy systems under windstorms," Applied Energy, Elsevier, vol. 270(C).
    10. DE WOLF, Daniel & SMEERS, Yves, 2000. "The gas transmission problem solved by an extension of the simplex algorithm," LIDAM Reprints CORE 1489, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Daniel De Wolf & Yves Smeers, 2000. "The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm," Management Science, INFORMS, vol. 46(11), pages 1454-1465, November.
    12. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    13. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Min & Li, Guoyuan & Chen, Anthony, 2024. "Resilience-driven post-disaster restoration of interdependent infrastructure systems under different decision-making environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Qiu, Dawei & Wang, Yi & Zhang, Tingqi & Sun, Mingyang & Strbac, Goran, 2023. "Hierarchical multi-agent reinforcement learning for repair crews dispatch control towards multi-energy microgrid resilience," Applied Energy, Elsevier, vol. 336(C).
    3. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Huang, Chunjun & Zong, Yi & You, Shi & Træholt, Chresten & Zheng, Yi & Wang, Jiawei & Zheng, Zixuan & Xiao, Xianyong, 2023. "Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities," Applied Energy, Elsevier, vol. 335(C).
    5. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
    7. Lv, Chaoxian & Liang, Rui & Jin, Wei & Chai, Yuanyuan & Yang, Tiankai, 2022. "Multi-stage resilience scheduling of electricity-gas integrated energy system with multi-level decentralized reserve," Applied Energy, Elsevier, vol. 317(C).
    8. Wang, Shuliang & Guo, Zhaoyang & Huang, Xiaodi & Zhang, Jianhua, 2024. "A three-stage model of quantifying and analyzing power network resilience based on network theory," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Li, Xue & Du, Xiaoxue & Jiang, Tao & Zhang, Rufeng & Chen, Houhe, 2022. "Coordinating multi-energy to improve urban integrated energy system resilience against extreme weather events," Applied Energy, Elsevier, vol. 309(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    2. Sun, Qirun & Wu, Zhi & Ma, Zhoujun & Gu, Wei & Zhang, Xiao-Ping & Lu, Yuping & Liu, Pengxiang, 2022. "Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination," Energy, Elsevier, vol. 241(C).
    3. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Ilalokhoin, Ohis & Pant, Raghav & Hall, Jim W., 2023. "A model and methodology for resilience assessment of interdependent rail networks – Case study of Great Britain's rail network," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Shuai Lin & Limin Jia & Hengrun Zhang & Yanhui Wang, 2021. "A method for assessing resilience of high-speed EMUs considering a network-based system topology and performance data," Journal of Risk and Reliability, , vol. 235(5), pages 877-895, October.
    6. Caputo, A.C. & Donati, L. & Salini, P., 2023. "Estimating resilience of manufacturing plants to physical disruptions: Model and application," International Journal of Production Economics, Elsevier, vol. 266(C).
    7. Wang, Can & Xie, Haipeng & Bie, Zhaohong & Li, Gengfeng & Yan, Chao, 2021. "Fast supply reliability evaluation of integrated power-gas system based on stochastic capacity network model and importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    8. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
    9. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Bao, Minglei & Ding, Yi & Sang, Maosheng & Li, Daqing & Shao, Changzheng & Yan, Jinyue, 2020. "Modeling and evaluating nodal resilience of multi-energy systems under windstorms," Applied Energy, Elsevier, vol. 270(C).
    11. Bao, Minglei & Ding, Yi & Yin, Xunhu & Shao, Changzheng & Ye, Chenjin, 2021. "Definitions and Reliability Evaluation of Multi-state Systems Considering State Transition Process and its Application for Gas Systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    12. da Silva, Fellipe Sartori & Matelli, José Alexandre, 2021. "Resilience in cogeneration systems: Metrics for evaluation and influence of design aspects," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    13. Shabazbegian, Vahid & Ameli, Hossein & Ameli, Mohammad Taghi & Strbac, Goran & Qadrdan, Meysam, 2021. "Co-optimization of resilient gas and electricity networks; a novel possibilistic chance-constrained programming approach," Applied Energy, Elsevier, vol. 284(C).
    14. Adriana Mar & Pedro Pereira & João F. Martins, 2019. "A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience," Energies, MDPI, vol. 12(24), pages 1-21, December.
    15. Beyza, Jesus & Ruiz-Paredes, Hector F. & Garcia-Paricio, Eduardo & Yusta, Jose M., 2020. "Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    17. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    18. Conrado Borraz-Sánchez & Dag Haugland, 2013. "Optimization methods for pipeline transportation of natural gas with variable specific gravity and compressibility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 524-541, October.
    19. Zhou, Li & Liao, Zuwei & Wang, Jingdai & Jiang, Binbo & Yang, Yongrong & Du, Wenli, 2015. "Energy configuration and operation optimization of refinery fuel gas networks," Applied Energy, Elsevier, vol. 139(C), pages 365-375.
    20. repec:cty:dpaper:1464 is not listed on IDEAS
    21. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:302:y:2021:i:c:s0306261921009387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.