IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i8p8650-8681d54217.html
   My bibliography  Save this article

A Closed-Loop Control Strategy for Air Conditioning Loads to Participate in Demand Response

Author

Listed:
  • Xiaoqing Hu

    (Department of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Beibei Wang

    (Department of Electrical Engineering, Southeast University, Nanjing 210096, China
    These authors contributed equally to this work.)

  • Shengchun Yang

    (China Electric Power Research Institute, Nanjing 210003, China
    These authors contributed equally to this work.)

  • Taylor Short

    (Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA
    These authors contributed equally to this work.)

  • Lei Zhou

    (Department of Electrical Engineering, Southeast University, Nanjing 210096, China
    These authors contributed equally to this work.)

Abstract

Thermostatically controlled loads (TCLs), such as air conditioners (ACs), are important demand response resources—they have a certain heat storage capacity. A change in the operating status of an air conditioner in a small range will not noticeably affect the users’ comfort level. Load control of TCLs is considered to be equivalent to a power plant of the same capacity in effect, and it can significantly reduce the system pressure to peak load shift. The thermodynamic model of air conditioning can be used to study the aggregate power of a number of ACs that respond to the step signal of a temperature set point. This paper analyzes the influence of the parameters of each AC in the group to the indoor temperature and the total load, and derives a simplified control model based on the two order linear time invariant transfer function. Then, the stability of the model and designs its Proportional-Integral-Differential (PID) controller based on the particle swarm optimization (PSO) algorithm is also studied. The case study presented in this paper simulates both scenarios of constant ambient temperature and changing ambient temperature to verify the proposed transfer function model and control strategy can closely track the reference peak load shifting curves. The study also demonstrates minimal changes in the indoor temperature and the users’ comfort level.

Suggested Citation

  • Xiaoqing Hu & Beibei Wang & Shengchun Yang & Taylor Short & Lei Zhou, 2015. "A Closed-Loop Control Strategy for Air Conditioning Loads to Participate in Demand Response," Energies, MDPI, vol. 8(8), pages 1-32, August.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8650-8681:d:54217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/8/8650/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/8/8650/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Newsham, Guy R. & Birt, Benjamin J. & Rowlands, Ian H., 2011. "A comparison of four methods to evaluate the effect of a utility residential air-conditioner load control program on peak electricity use," Energy Policy, Elsevier, vol. 39(10), pages 6376-6389, October.
    2. Moghaddam, M. Parsa & Abdollahi, A. & Rashidinejad, M., 2011. "Flexible demand response programs modeling in competitive electricity markets," Applied Energy, Elsevier, vol. 88(9), pages 3257-3269.
    3. Middelberg, Arno & Zhang, Jiangfeng & Xia, Xiaohua, 2009. "An optimal control model for load shifting - With application in the energy management of a colliery," Applied Energy, Elsevier, vol. 86(7-8), pages 1266-1273, July.
    4. Pedro Faria & Zita Vale & José Baptista, 2015. "Demand Response Programs Design and Use Considering Intensive Penetration of Distributed Generation," Energies, MDPI, vol. 8(6), pages 1-17, June.
    5. Sam Weckx & Reinhilde D'hulst & Johan Driesen, 2015. "Locational Pricing to Mitigate Voltage Problems Caused by High PV Penetration," Energies, MDPI, vol. 8(5), pages 1-22, May.
    6. Mario Collotta & Antonio Messineo & Giuseppina Nicolosi & Giovanni Pau, 2014. "A Dynamic Fuzzy Controller to Meet Thermal Comfort by Using Neural Network Forecasted Parameters as the Input," Energies, MDPI, vol. 7(8), pages 1-30, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanima Bal & Saheli Ray & Nidul Sinha & Ramesh Devarapalli & Łukasz Knypiński, 2023. "Integrating Demand Response for Enhanced Load Frequency Control in Micro-Grids with Heating, Ventilation and Air-Conditioning Systems," Energies, MDPI, vol. 16(15), pages 1-23, August.
    2. Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
    3. Valeria Palomba & Efstratios Varvagiannis & Sotirios Karellas & Andrea Frazzica, 2019. "Hybrid Adsorption-Compression Systems for Air Conditioning in Efficient Buildings: Design through Validated Dynamic Models," Energies, MDPI, vol. 12(6), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    2. Stötzer, Martin & Hauer, Ines & Richter, Marc & Styczynski, Zbigniew A., 2015. "Potential of demand side integration to maximize use of renewable energy sources in Germany," Applied Energy, Elsevier, vol. 146(C), pages 344-352.
    3. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    4. S.R. Patterson & E. Kozan & P. Hyland, 2016. "An integrated model of an open-pit coal mine: improving energy efficiency decisions," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4213-4227, July.
    5. Xinhui Lu & Kaile Zhou & Felix T. S. Chan & Shanlin Yang, 2017. "Optimal scheduling of household appliances for smart home energy management considering demand response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1639-1653, September.
    6. Xin-Rui Liu & Si-Luo Sun & Qiu-Ye Sun & Wei-Yang Zhong, 2020. "Time-Scale Economic Dispatch of Electricity-Heat Integrated System Based on Users’ Thermal Comfort," Energies, MDPI, vol. 13(20), pages 1-27, October.
    7. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    8. Lang, Corey & Okwelum, Edson, 2015. "The mitigating effect of strategic behavior on the net benefits of a direct load control program," Energy Economics, Elsevier, vol. 49(C), pages 141-148.
    9. Loßner, Martin & Böttger, Diana & Bruckner, Thomas, 2017. "Economic assessment of virtual power plants in the German energy market — A scenario-based and model-supported analysis," Energy Economics, Elsevier, vol. 62(C), pages 125-138.
    10. Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Chen, Runze & Wang, Bin, 2017. "A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment," Applied Energy, Elsevier, vol. 206(C), pages 1364-1378.
    11. Amir Sadegh Zakeri & Hossein Askarian Abyaneh, 2017. "Transmission Expansion Planning Using TLBO Algorithm in the Presence of Demand Response Resources," Energies, MDPI, vol. 10(9), pages 1-15, September.
    12. Sandoval, Diego & Goffin, Philippe & Leibundgut, Hansjürg, 2017. "How low exergy buildings and distributed electricity storage can contribute to flexibility within the demand side," Applied Energy, Elsevier, vol. 187(C), pages 116-127.
    13. Finn, P. & O’Connell, M. & Fitzpatrick, C., 2013. "Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction," Applied Energy, Elsevier, vol. 101(C), pages 678-685.
    14. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    15. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    16. Qingwu Gong & Jiazhi Lei & Jun Ye, 2016. "Optimal Siting and Sizing of Distributed Generators in Distribution Systems Considering Cost of Operation Risk," Energies, MDPI, vol. 9(1), pages 1-18, January.
    17. Tebello Mathaba & Xiaohua Xia, 2015. "A Parametric Energy Model for Energy Management of Long Belt Conveyors," Energies, MDPI, vol. 8(12), pages 1-19, December.
    18. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    19. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    20. Wang, Fei & Ge, Xinxin & Yang, Peng & Li, Kangping & Mi, Zengqiang & Siano, Pierluigi & Duić, Neven, 2020. "Day-ahead optimal bidding and scheduling strategies for DER aggregator considering responsive uncertainty under real-time pricing," Energy, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8650-8681:d:54217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.