IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v292y2021ics0306261921003238.html
   My bibliography  Save this article

Demand response to improve the shared electric vehicle planning: Managerial insights, sustainable benefits

Author

Listed:
  • Ran, Cuiling
  • Zhang, Yanzi
  • Yin, Ying

Abstract

Massive adoption of shared electric mobility benefits people’s daily commute and environment but creates overload issues into the power grid, then further cause challenges to charging service operations and power management. Previous research always focuses on single optimization process on shared vehicle planning, rather than the combination of demand management into day-ahead planning operations. To this end, we attempt to propose a mixed integer programming model integrating demand response operations to further explore the impacts of demand response on shared electric vehicle planning operations. We first model a two-stages model integrating charging facility location in the first stage and vehicle relocation in the second stage. Moreover, both supply-side and demand-side uncertainties are considered and approximated into tractable form by applying sample average approximation and distributional robust set featuring the entropy knowledge and electric vehicle’s multi-level charging duration. The demand response policy is also proposed to reshape the original charging demand into an economical and reliable way to improve operational efficiency and mitigate the power overload issues caused by massive electric vehicle adoption. Further, we conduct a real-world case study in Amsterdam, the Netherlands, to explore the social-operational impacts of vehicle planning optimization model integrating the demand response, robust charging facility planning in three areas: (1) The demand response integration promote electric vehicle planning operations on cost-saving for about 3%. (2) Data richness of serviceability towards charging piles influence all decisions through the shared electric vehicle charging station planning. (3) A trade-off exists between technical progress on charging rate and charging technology stability.

Suggested Citation

  • Ran, Cuiling & Zhang, Yanzi & Yin, Ying, 2021. "Demand response to improve the shared electric vehicle planning: Managerial insights, sustainable benefits," Applied Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:appene:v:292:y:2021:i:c:s0306261921003238
    DOI: 10.1016/j.apenergy.2021.116823
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921003238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116823?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Zihao & Ran, Lun & Zhang, Yanzi & Ren, Yaping, 2021. "Robust vehicle-to-grid power dispatching operations amid sociotechnical complexities," Applied Energy, Elsevier, vol. 281(C).
    2. James E. Smith, 1995. "Generalized Chebychev Inequalities: Theory and Applications in Decision Analysis," Operations Research, INFORMS, vol. 43(5), pages 807-825, October.
    3. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    4. Amela Ajanovic & Reinhard Haas, 2018. "Electric vehicles: solution or new problem?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 7-22, December.
    5. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    6. S A Gabriel & R García-Bertrand & P Sahakij & A J Conejo, 2006. "A practical approach to approximate bilinear functions in mathematical programming problems by using Schur's decomposition and SOS type 2 variables," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(8), pages 995-1004, August.
    7. Osorio, Andres F. & Brailsford, Sally C. & Smith, Honora K., 2018. "Whole blood or apheresis donations? A multi-objective stochastic optimization approach," European Journal of Operational Research, Elsevier, vol. 266(1), pages 193-204.
    8. Seeley, Brien A. MD. & Seeley, Damon & Rakas, Jasenka PhD, 2020. "A Report on the Future of Electric Aviation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4t76186k, Institute of Transportation Studies, UC Berkeley.
    9. Good, Nicholas, 2019. "Using behavioural economic theory in modelling of demand response," Applied Energy, Elsevier, vol. 239(C), pages 107-116.
    10. Rui Chen & Xinglu Liu & Lixin Miao & Peng Yang, 2020. "Electric Vehicle Tour Planning Considering Range Anxiety," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    11. Moghaddam, M. Parsa & Abdollahi, A. & Rashidinejad, M., 2011. "Flexible demand response programs modeling in competitive electricity markets," Applied Energy, Elsevier, vol. 88(9), pages 3257-3269.
    12. Rishee K. Jain & Junjie Qin & Ram Rajagopal, 2017. "Data-driven planning of distributed energy resources amidst socio-technical complexities," Nature Energy, Nature, vol. 2(8), pages 1-11, August.
    13. Yogesh Priya S & Selvaraj P, 2020. "Electrocardiography of Snake- A Mini Review," JOJ Wildlife & Biodiversity, Juniper Publishers Inc., vol. 2(1), pages 30-32, February.
    14. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    15. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    16. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    17. Itf, 2020. "Electrifying Postal Delivery Vehicles in Korea," International Transport Forum Policy Papers 73, OECD Publishing.
    18. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    19. Zihao Jiao & Lun Ran & Xin Liu & Yuli Zhang & Robin G. Qiu, 2020. "Integrating Price-Incentive and Trip-Selection Policies to Rebalance Shared Electric Vehicles," Service Science, INFORMS, vol. 12(4), pages 148-173, December.
    20. Zhang, Guidong & Li, Zhong & Zhang, Bo & Halang, Wolfgang A., 2018. "Power electronics converters: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2028-2044.
    21. Wei Qi & Yong Liang & Zuo-Jun Max Shen, 2015. "Joint Planning of Energy Storage and Transmission for Wind Energy Generation," Operations Research, INFORMS, vol. 63(6), pages 1280-1293, December.
    22. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xingrong & Shao, Shuai & Ma, Ye & Ma, Tieju, 2023. "Who Embraces shared mobility and why? A survey in Beijing and Shanghai, China," Energy, Elsevier, vol. 283(C).
    2. Yong Wang & Jingxin Zhou & Yaoyao Sun & Xiuwen Wang & Jiayi Zhe & Haizhong Wang, 2022. "Electric Vehicle Charging Station Location-Routing Problem with Time Windows and Resource Sharing," Sustainability, MDPI, vol. 14(18), pages 1-31, September.
    3. Zeynali, Saeed & Nasiri, Nima & Marzband, Mousa & Ravadanegh, Sajad Najafi, 2021. "A hybrid robust-stochastic framework for strategic scheduling of integrated wind farm and plug-in hybrid electric vehicle fleets," Applied Energy, Elsevier, vol. 300(C).
    4. Wang, Yitong & Fan, Ruguo & Du, Kang & Bao, Xuguang, 2023. "Exploring incentives to promote electric vehicles diffusion under subsidy abolition: An evolutionary analysis on multiplex consumer social networks," Energy, Elsevier, vol. 276(C).
    5. Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
    6. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    7. Saeed Alyami, 2024. "Ensuring Sustainable Grid Stability through Effective EV Charging Management: A Time and Energy-Based Approach," Sustainability, MDPI, vol. 16(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostad Sæther, Simen, 2022. "Mobility at the crossroads – Electric mobility policy and charging infrastructure lessons from across Europe," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 144-159.
    2. Zhang, Tong & Burke, Paul J. & Wang, Qi, 2024. "Effectiveness of electric vehicle subsidies in China: A three-dimensional panel study," Resource and Energy Economics, Elsevier, vol. 76(C).
    3. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    4. Metzker Soares, Paula & Thevenin, Simon & Adulyasak, Yossiri & Dolgui, Alexandre, 2024. "Adaptive robust optimization for lot-sizing under yield uncertainty," European Journal of Operational Research, Elsevier, vol. 313(2), pages 513-526.
    5. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    6. Riggs, William & Kawashima, Matt & Batstone, David, 2021. "Exploring best practice for municipal e-scooter policy in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 18-27.
    7. Othman Alshamrani & Adel Alshibani & Awsan Mohammed, 2022. "Operational Energy and Carbon Cost Assessment Model for Family Houses in Saudi Arabia," Sustainability, MDPI, vol. 14(3), pages 1-18, January.
    8. Innocent Kamwa & Leila Bagherzadeh & Atieh Delavari, 2023. "Integrated Demand Response Programs in Energy Hubs: A Review of Applications, Classifications, Models and Future Directions," Energies, MDPI, vol. 16(11), pages 1-21, May.
    9. Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.
    10. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    11. Shin, Youngchul & Lee, Sangyoon & Moon, Ilkyeong, 2021. "Robust multiperiod inventory model with a new type of buy one get one promotion: “My Own Refrigerator”," Omega, Elsevier, vol. 99(C).
    12. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    13. Lin, Penghui & Zhang, Limao & Tiong, Robert L.K., 2023. "Multi-objective robust optimization for enhanced safety in large-diameter tunnel construction with interactive and explainable AI," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Jayarathna, Lasinidu & Kent, Geoff & O’Hara, Ian & Hobson, Philip, 2022. "Geographical information system based fuzzy multi criteria analysis for sustainability assessment of biomass energy plant siting: A case study in Queensland, Australia," Land Use Policy, Elsevier, vol. 114(C).
    15. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    16. Moreira, Alexandre & Pozo, David & Street, Alexandre & Sauma, Enzo & Strbac, Goran, 2021. "Climate‐aware generation and transmission expansion planning: A three‐stage robust optimization approach," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1099-1118.
    17. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).
    18. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    19. Zhang, Chao & Lasaulce, Samson & Wang, Li & Saludjian, Lucas & Poor, H. Vincent, 2022. "A refined consumer behavior model for energy systems: Application to the pricing and energy-efficiency problems," Applied Energy, Elsevier, vol. 308(C).
    20. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:292:y:2021:i:c:s0306261921003238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.