IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v103y2019icp308-319.html
   My bibliography  Save this article

Optimisation of demand response in electric power systems, a review

Author

Listed:
  • Jordehi, A. Rezaee

Abstract

Demand response programs offer efficient solutions for many power system problems, such as high generation cost, high demand’s peak to average ratio, high emissions, reliability issues and congestion in generation, transmission and distribution systems. Their main function is to assist power systems during peak demand hours and also during contingencies. They are a subcategory of the family of demand side management (DSM) strategies. DR programs are classified into two broad categories; price-based DR programs and incentive-based DR programs. In order to exploit their full potential, DR programs must be implemented optimally. Such a problem, which here is referred to as “DR optimisation problem”, is a hot research topic and has been frequently researched in the literature. This paper aims to review different research works on DR optimisation problems. Based on the conducted review, some directions for future research are proposed.

Suggested Citation

  • Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
  • Handle: RePEc:eee:rensus:v:103:y:2019:i:c:p:308-319
    DOI: 10.1016/j.rser.2018.12.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118308566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.12.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herriges, Joseph A, et al, 1993. "The Response of Industrial Customers to Electric Rates Based upon Dynamic Marginal Costs," The Review of Economics and Statistics, MIT Press, vol. 75(3), pages 446-454, August.
    2. Hu, Maomao & Xiao, Fu, 2018. "Price-responsive model-based optimal demand response control of inverter air conditioners using genetic algorithm," Applied Energy, Elsevier, vol. 219(C), pages 151-164.
    3. Centolella, Paul, 2010. "The integration of Price Responsive Demand into Regional Transmission Organization (RTO) wholesale power markets and system operations," Energy, Elsevier, vol. 35(4), pages 1568-1574.
    4. Laihyuk Park & Yongwoon Jang & Hyoungchel Bae & Juho Lee & Chang Yun Park & Sungrae Cho, 2017. "Automated Energy Scheduling Algorithms for Residential Demand Response Systems," Energies, MDPI, vol. 10(9), pages 1-17, September.
    5. Wang, Yong & Li, Lin, 2013. "Time-of-use based electricity demand response for sustainable manufacturing systems," Energy, Elsevier, vol. 63(C), pages 233-244.
    6. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.
    7. Allcott, Hunt, 2011. "Rethinking real-time electricity pricing," Resource and Energy Economics, Elsevier, vol. 33(4), pages 820-842.
    8. Abdulaal, Ahmed & Moghaddass, Ramin & Asfour, Shihab, 2017. "Two-stage discrete-continuous multi-objective load optimization: An industrial consumer utility approach to demand response," Applied Energy, Elsevier, vol. 206(C), pages 206-221.
    9. Stephen P. Holland & Erin T. Mansur, 2008. "Is Real-Time Pricing Green? The Environmental Impacts of Electricity Demand Variance," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 550-561, August.
    10. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    11. Nan, Sibo & Zhou, Ming & Li, Gengyin, 2018. "Optimal residential community demand response scheduling in smart grid," Applied Energy, Elsevier, vol. 210(C), pages 1280-1289.
    12. Torriti, Jacopo, 2012. "Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy," Energy, Elsevier, vol. 44(1), pages 576-583.
    13. Jang, Dongsik & Eom, Jiyong & Jae Park, Min & Jeung Rho, Jae, 2016. "Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers," Energy Policy, Elsevier, vol. 88(C), pages 11-26.
    14. Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.
    15. Zhang, Sufang & Jiao, Yiqian & Chen, Wenjun, 2017. "Demand-side management (DSM) in the context of China's on-going power sector reform," Energy Policy, Elsevier, vol. 100(C), pages 1-8.
    16. Kamyab, Farhad & Bahrami, Shahab, 2016. "Efficient operation of energy hubs in time-of-use and dynamic pricing electricity markets," Energy, Elsevier, vol. 106(C), pages 343-355.
    17. Derakhshan, Ghasem & Shayanfar, Heidar Ali & Kazemi, Ahad, 2016. "The optimization of demand response programs in smart grids," Energy Policy, Elsevier, vol. 94(C), pages 295-306.
    18. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    19. Severin Borenstein, 2005. "The Long-Run Efficiency of Real-Time Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 93-116.
    20. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    21. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    2. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    3. Heydarian-Forushani, Ehsan & Golshan, Mohamad Esmail Hamedani & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "A comprehensive linear model for demand response optimization problem," Energy, Elsevier, vol. 209(C).
    4. Allcott, Hunt, 2011. "Rethinking real-time electricity pricing," Resource and Energy Economics, Elsevier, vol. 33(4), pages 820-842.
    5. Kopsakangas Savolainen, Maria & Svento, Rauli, 2012. "Real-Time Pricing in the Nordic Power markets," Energy Economics, Elsevier, vol. 34(4), pages 1131-1142.
    6. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    7. Bhagya Nathali Silva & Murad Khan & Kijun Han, 2020. "Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    8. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    9. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Adela Conchado & Pedro Linares, 2010. "The Economic Impact of Demand-Response Programs on Power Systems. A survey of the State of the Art," Working Papers 02-2010, Economics for Energy.
    11. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    12. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    13. Devine, Mel T. & Bertsch, Valentin, 2018. "Examining the benefits of load shedding strategies using a rolling-horizon stochastic mixed complementarity equilibrium model," European Journal of Operational Research, Elsevier, vol. 267(2), pages 643-658.
    14. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    15. Nezamoddini, Nasim & Wang, Yong, 2017. "Real-time electricity pricing for industrial customers: Survey and case studies in the United States," Applied Energy, Elsevier, vol. 195(C), pages 1023-1037.
    16. Cortés-Arcos, Tomás & Bernal-Agustín, José L. & Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Contreras, Javier, 2017. "Multi-objective demand response to real-time prices (RTP) using a task scheduling methodology," Energy, Elsevier, vol. 138(C), pages 19-31.
    17. Cédric Clastres & Haikel Khalfallah, 2020. "Retailers' strategies facing demand response and markets interactions," Working Papers hal-03167543, HAL.
    18. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Thomas-Olivier Leautier, 2014. "Is Mandating "Smart Meters" Smart?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    20. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:103:y:2019:i:c:p:308-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.