IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip2p2659-2671.html
   My bibliography  Save this article

Distribution system state estimation-A step towards smart grid

Author

Listed:
  • Ahmad, Fiaz
  • Rasool, Akhtar
  • Ozsoy, Emre
  • Sekar, Raja
  • Sabanovic, Asif
  • Elitaş, Meltem

Abstract

State estimation (SE) is well-established at the transmission system level of the electricity grid, where it has been in use for the last few decades and is a most vital component of energy management systems employed in the monitoring and control centers of electric transmission systems. However, its use for the monitoring and control of power distribution systems (DSs) has not yet been widely implemented because DSs have been majorly passive with uni-directional power flows. This scenario is now changing with the advent of smart grid, which is changing the nature of electric distribution networks by embracing more dispersed generation, demand responsive loads, and measurements devices with different data rates. Thus, the development of distribution system state estimation (DSSE) tool is inevitable for the implementation of protection, optimization, and control techniques, and various other features envisioned by the smart grid concept. Due to the inherent characteristics of DS different from those of transmission systems, transmission system state estimation (TSSE) is not applicable directly to DSs. This paper is an attempt to present the state-of-the-art on DSSE as an enabler function for smart grid features. It broadly reviews the development of DSSE, challenges faced by its development, and various DSSE algorithms. Additionally, it identifies some future research lines for DSSE.

Suggested Citation

  • Ahmad, Fiaz & Rasool, Akhtar & Ozsoy, Emre & Sekar, Raja & Sabanovic, Asif & Elitaş, Meltem, 2018. "Distribution system state estimation-A step towards smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2659-2671.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:2659-2671
    DOI: 10.1016/j.rser.2017.06.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117310134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.06.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khorshidi, Reza & Shabaninia, Faridon & Niknam, Taher, 2016. "A new smart approach for state estimation of distribution grids considering renewable energy sources," Energy, Elsevier, vol. 94(C), pages 29-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward J. Smith & Duane A. Robinson & Sean Elphick, 2024. "DER Control and Management Strategies for Distribution Networks: A Review of Current Practices and Future Directions," Energies, MDPI, vol. 17(11), pages 1-40, May.
    2. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    3. Sepideh Radhoush & Maryam Bahramipanah & Hashem Nehrir & Zagros Shahooei, 2022. "A Review on State Estimation Techniques in Active Distribution Networks: Existing Practices and Their Challenges," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    4. Karthikeyan Nainar & Florin Iov, 2020. "Smart Meter Measurement-Based State Estimation for Monitoring of Low-Voltage Distribution Grids," Energies, MDPI, vol. 13(20), pages 1-18, October.
    5. Margossian, Harag & Kfouri, Ronald & Saliba, Rita, 2023. "Measurement protection to prevent cyber–physical attacks against power system State Estimation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
    6. Karthikeyan Nainar & Florin Iov, 2021. "Three-Phase State Estimation for Distribution-Grid Analytics," Clean Technol., MDPI, vol. 3(2), pages 1-14, May.
    7. Fabio Napolitano & Juan Diego Rios Penaloza & Fabio Tossani & Alberto Borghetti & Carlo Alberto Nucci, 2021. "Three-Phase State Estimation of a Low-Voltage Distribution Network with Kalman Filter," Energies, MDPI, vol. 14(21), pages 1-19, November.
    8. Sepideh Radhoush & Trevor Vannoy & Kaveen Liyanage & Bradley M. Whitaker & Hashem Nehrir, 2023. "Distribution System State Estimation and False Data Injection Attack Detection with a Multi-Output Deep Neural Network," Energies, MDPI, vol. 16(5), pages 1-22, February.
    9. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    10. István Táczi & Bálint Sinkovics & István Vokony & Bálint Hartmann, 2021. "The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review," Energies, MDPI, vol. 14(17), pages 1-17, August.
    11. Aqdas Naz & Nadeem Javaid & Muhammad Babar Rasheed & Abdul Haseeb & Musaed Alhussein & Khursheed Aurangzeb, 2019. "Game Theoretical Energy Management with Storage Capacity Optimization and Photo-Voltaic Cell Generated Power Forecasting in Micro Grid," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    12. Guoli Feng & Zhihao Ye & Yihui Xia & Heng Nian & Liming Huang & Zerun Wang, 2022. "High Frequency Resonance Suppression Strategy of Three-Phase Four-Wire Split Capacitor Inverter Connected to Parallel Compensation Grid," Energies, MDPI, vol. 15(4), pages 1-20, February.
    13. Leila Kamyabi & Tek Tjing Lie & Samaneh Madanian & Sarah Marshall, 2024. "A Comprehensive Review of Hybrid State Estimation in Power Systems: Challenges, Opportunities and Prospects," Energies, MDPI, vol. 17(19), pages 1-20, September.
    14. Guoli Feng & Zhihao Ye & Yihui Xia & Liming Huang & Zerun Wang, 2022. "Impedance Modeling and Stability Analysis of Three-Phase Four-Wire Inverter with Grid-Connected Operation," Energies, MDPI, vol. 15(8), pages 1-26, April.
    15. Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
    16. Abouzar Estebsari & Luca Barbierato & Alireza Bahmanyar & Lorenzo Bottaccioli & Enrico Macii & Edoardo Patti, 2019. "A SGAM-Based Test Platform to Develop a Scheme for Wide Area Measurement-Free Monitoring of Smart Grids under High PV Penetration," Energies, MDPI, vol. 12(8), pages 1-27, April.
    17. Sepideh Radhoush & Bradley M. Whitaker & Hashem Nehrir, 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks," Energies, MDPI, vol. 16(16), pages 1-29, August.
    18. Israa T. Aziz & Hai Jin & Ihsan H. Abdulqadder & Sabah M. Alturfi & Wisam H. Alobaidi & Firas M.F. Flaih, 2019. "T 2 S 2 G: A Novel Two-Tier Secure Smart Grid Architecture to Protect Network Measurements," Energies, MDPI, vol. 12(13), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Israa T. Aziz & Hai Jin & Ihsan H. Abdulqadder & Sabah M. Alturfi & Wisam H. Alobaidi & Firas M.F. Flaih, 2019. "T 2 S 2 G: A Novel Two-Tier Secure Smart Grid Architecture to Protect Network Measurements," Energies, MDPI, vol. 12(13), pages 1-24, July.
    2. Cisneros-Magaña, Rafael & Medina-Rios, Aurelio & Fuerte-Esquivel, Claudio R. & Segundo-Ramírez, Juan, 2022. "Harmonic state estimation based on discrete exponential expansion, singular value decomposition and a variable measurement model," Energy, Elsevier, vol. 249(C).
    3. István Táczi & Bálint Sinkovics & István Vokony & Bálint Hartmann, 2021. "The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review," Energies, MDPI, vol. 14(17), pages 1-17, August.
    4. Anna Glazunova & Evgenii Semshikov & Michael Negnevitsky, 2021. "Real-Time Flexibility Assessment for Power Systems with High Wind Energy Penetration," Mathematics, MDPI, vol. 9(17), pages 1-16, August.
    5. Sepideh Radhoush & Maryam Bahramipanah & Hashem Nehrir & Zagros Shahooei, 2022. "A Review on State Estimation Techniques in Active Distribution Networks: Existing Practices and Their Challenges," Sustainability, MDPI, vol. 14(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:2659-2671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.