An Integrated Planning Strategy for a Power Network and the Charging Infrastructure of Electric Vehicles for Power System Resilience Enhancement
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Salman, Abdullahi M. & Li, Yue & Stewart, Mark G., 2015. "Evaluating system reliability and targeted hardening strategies of power distribution systems subjected to hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 319-333.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
- Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Hassan Yousif Ahmed & Ziad M. Ali & Mohamed M. Refaat & Shady H. E. Abdel Aleem, 2023. "A Multi-Objective Planning Strategy for Electric Vehicle Charging Stations towards Low Carbon-Oriented Modern Power Systems," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
- Antonio T. Alexandridis, 2020. "Modern Power System Dynamics, Stability and Control," Energies, MDPI, vol. 13(15), pages 1-8, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
- Popović, Željko N. & KovaÄ ki, Neven V. & Popović, Dragan S., 2020. "Resilient distribution network planning under the severe windstorms using a risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
- Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
- Zhang, Jintao & Bagtzoglou, Yiannis & Zhu, Jin & Li, Baikun & Zhang, Wei, 2023. "Fragility-based system performance assessment of critical power infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Rychlik, Tomasz, 2017. "Evaluations of quantiles of system lifetime distributions," European Journal of Operational Research, Elsevier, vol. 256(3), pages 935-944.
- Zhang, Dingmao & Li, Gengfeng & Bie, Zhaohong & Fan, Kangjian, 2024. "An analytical method for reliability evaluation of power distribution system with time-varying failure rates," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Salman, Abdullahi M. & Li, Yue & Bastidas-Arteaga, Emilio, 2017. "Maintenance optimization for power distribution systems subjected to hurricane hazard, timber decay and climate change," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 136-149.
- Paraic C. Ryan & Mark G. Stewart, 2017. "Cost-benefit analysis of climate change adaptation for power pole networks," Climatic Change, Springer, vol. 143(3), pages 519-533, August.
- Davis, Matthew T. & Proctor, Michael D. & Shageer, Buder, 2017. "Disaster factor screening using SoS conceptual modeling and an LVC simulation framework," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 368-375.
- Zhang, Qianzhi & Wang, Zhaoyu & Ma, Shanshan & Arif, Anmar, 2021. "Stochastic pre-event preparation for enhancing resilience of distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Dar, Roouf Un Nabi & Alagappan, P., 2024. "A performance-based ballistic design framework for RC panels and a probabilistic model for crater quantification," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Zidane, Tekai Eddine Khalil & Muis, Zarina Ab & Ho, Wai Shin & Zahraoui, Younes & Aziz, Ali Saleh & Su, Chun-Lien & Mekhilef, Saad & Elia Campana, Pietro, 2025. "Power systems and microgrids resilience enhancement strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
- Xue, Jiayue & Mohammadi, Farshad & Li, Xin & Sahraei-Ardakani, Mostafa & Ou, Ge & Pu, Zhaoxia, 2020. "Impact of transmission tower-line interaction to the bulk power system during hurricane," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
- Hong, Xu & Wan, Zhiqiang & Chen, Jianbing, 2023. "Parallel assessment of the tropical cyclone wind hazard at multiple locations using the probability density evolution method integrated with the change of probability measure," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
- Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Dikshit, Saransh & Alipour, Alice, 2023. "A moment-matching method for fragility analysis of transmission towers under straight line winds," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
More about this item
Keywords
power system; resilience enhancement; electric vehicle; load shedding; robust optimization; normal stage; resilience stage; integrated planning; duality-based column and constraint generation (D-CCG) algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3918-:d:277041. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.