IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224008776.html
   My bibliography  Save this article

Transportable energy storage assisted post-disaster restoration of distribution networks with renewable generations

Author

Listed:
  • Zhao, Shihao
  • Li, Kang
  • Yin, Mingjia
  • Yu, James
  • Yang, Zhile
  • Li, Yihuan

Abstract

More frequent extreme weather events due to climate change impose significant challenges on the post-disaster restoration of distribution systems with significant penetration of renewable generations. To address this challenge, this paper investigates a restoration scheme for distribution networks integrated with renewable generations, and transportable energy storage systems moving along a transportation network, such as railway or road network, are used to support the network restoration after the fault event. To achieve this, for given fault conditions, topological reconfiguration is first facilitated via the soft open point (SOP) technology, and local renewable generators and loads are rapidly regrouped to form microgrids for post-disaster restoration. Then, assisted with transportable energy storage, the resources within the microgrids can be dispatched more efficiently, facilitating a more efficient post-disaster recovery process. To enable a cost-effective restoration of the distribution network, an economic model is formulated with the aim of minimizing the economic losses during the post-disaster restoration process. Case studies considering a significant number of failure scenarios show that the proposed transportable energy storage-assisted restoration scheme can effectively minimize costs during the post-disaster period considering various load types across different areas. This scheme not only achieves cost-effective post-disaster restoration but also ensures compliance with the constraints of the electrical networks, achieving up to 93.3% recovery cost reduction and 74.25% increase in critical load restoration.

Suggested Citation

  • Zhao, Shihao & Li, Kang & Yin, Mingjia & Yu, James & Yang, Zhile & Li, Yihuan, 2024. "Transportable energy storage assisted post-disaster restoration of distribution networks with renewable generations," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008776
    DOI: 10.1016/j.energy.2024.131105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Yueqing & Qian, Tong & Li, Weiwei & Zhao, Wei & Tang, Wenhu & Chen, Xingyu & Yu, Zeyuan, 2023. "Mobile energy storage systems with spatial–temporal flexibility for post-disaster recovery of power distribution systems: A bilevel optimization approach," Energy, Elsevier, vol. 282(C).
    2. Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
    3. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    4. Fu, Wei & Xie, Haipeng & Zhu, Hao & Wang, Hefeng & Jiang, Lizhou & Chen, Chen & Bie, Zhaohong, 2023. "Coordinated post-disaster restoration for resilient urban distribution systems: A hybrid quantum-classical approach," Energy, Elsevier, vol. 284(C).
    5. Li, Yanbin & Sun, Yanting & Liu, Jiechao & Liu, Chang & Zhang, Feng, 2023. "A data driven robust optimization model for scheduling near-zero carbon emission power plant considering the wind power output uncertainties and electricity-carbon market," Energy, Elsevier, vol. 279(C).
    6. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
    8. Zamani Gargari, Milad & Tarafdar Hagh, Mehrdad & Ghassem Zadeh, Saeid, 2023. "Preventive scheduling of a multi-energy microgrid with mobile energy storage to enhance the resiliency of the system," Energy, Elsevier, vol. 263(PC).
    9. Nikoobakht, Ahmad & Aghaei, Jamshid, 2022. "Resilience promotion of active distribution grids under high penetration of renewables using flexible controllers," Energy, Elsevier, vol. 257(C).
    10. Zhao, Shihao & Li, Kang & Yang, Zhile & Xu, Xinzhi & Zhang, Ning, 2022. "A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies," Applied Energy, Elsevier, vol. 314(C).
    11. Khaledi, Arian & Saifoddin, Amirali, 2023. "Three-stage resilience-oriented active distribution systems operation after natural disasters," Energy, Elsevier, vol. 282(C).
    12. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Benefits analysis of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 165(C), pages 36-47.
    13. Li, Xue & Du, Xiaoxue & Jiang, Tao & Zhang, Rufeng & Chen, Houhe, 2022. "Coordinating multi-energy to improve urban integrated energy system resilience against extreme weather events," Applied Energy, Elsevier, vol. 309(C).
    14. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    15. Gilani, Mohammad Amin & Kazemi, Ahad & Ghasemi, Mostafa, 2020. "Distribution system resilience enhancement by microgrid formation considering distributed energy resources," Energy, Elsevier, vol. 191(C).
    16. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    17. Mansouri, S.A. & Ahmarinejad, A. & Nematbakhsh, E. & Javadi, M.S. & Esmaeel Nezhad, A. & Catalão, J.P.S., 2022. "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources," Energy, Elsevier, vol. 245(C).
    18. Saravi, Vahid Sabzpoosh & Kalantar, Mohsen & Anvari-Moghaddam, Amjad, 2022. "Resilience-constrained expansion planning of integrated power–gas–heat distribution networks," Applied Energy, Elsevier, vol. 323(C).
    19. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Operating principle of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 164(C), pages 245-257.
    20. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    21. Li, Peng & Ji, Jie & Ji, Haoran & Song, Guanyu & Wang, Chengshan & Wu, Jianzhong, 2020. "Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Liangyu & Han, Yang & Zalhaf, Amr S. & Zhou, Siyu & Yang, Ping & Wang, Congling & Huang, Tao, 2024. "Resilience enhancement of active distribution networks under extreme disaster scenarios: A comprehensive overview of fault location strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Xu, Jiuping & Tian, Yalou & Wang, Fengjuan & Yang, Guocan & Zhao, Chuandang, 2024. "Resilience-economy-environment equilibrium based configuration interaction approach towards distributed energy system in energy intensive industry parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Zhichun Yang & Fan Yang & Huaidong Min & Yu Shen & Xu Tang & Yun Hong & Liang Qin, 2023. "A Local Control Strategy for Voltage Fluctuation Suppression in a Flexible Interconnected Distribution Station Area Based on Soft Open Point," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
    4. Shi, Wenlong & Liang, Hao & Bittner, Myrna, 2024. "Dynamic microgrid formation for resilient distribution systems considering large-scale deployment of mobile energy resources," Applied Energy, Elsevier, vol. 362(C).
    5. Escalera, Alberto & Prodanović, Milan & Castronuovo, Edgardo D. & Roldan-Perez, Javier, 2020. "Contribution of active management technologies to the reliability of power distribution networks," Applied Energy, Elsevier, vol. 267(C).
    6. Shen, Yueqing & Qian, Tong & Li, Weiwei & Zhao, Wei & Tang, Wenhu & Chen, Xingyu & Yu, Zeyuan, 2023. "Mobile energy storage systems with spatial–temporal flexibility for post-disaster recovery of power distribution systems: A bilevel optimization approach," Energy, Elsevier, vol. 282(C).
    7. Huang, Chunjun & Zong, Yi & You, Shi & Træholt, Chresten & Zheng, Yi & Wang, Jiawei & Zheng, Zixuan & Xiao, Xianyong, 2023. "Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities," Applied Energy, Elsevier, vol. 335(C).
    8. Zhou, Yizhou & Li, Xiang & Han, Haiteng & Wei, Zhinong & Zang, Haixiang & Sun, Guoqiang & Chen, Sheng, 2024. "Resilience-oriented planning of integrated electricity and heat systems: A stochastic distributionally robust optimization approach," Applied Energy, Elsevier, vol. 353(PA).
    9. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    10. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    11. Wang, Ke & Xue, Yixun & Zhou, Yue & Li, Zening & Chang, Xinyue & Sun, Hongbin, 2024. "Distributed coordinated reconfiguration with soft open points for resilience-oriented restoration in integrated electric and heating systems," Applied Energy, Elsevier, vol. 365(C).
    12. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Hou, Hui & Tang, Junyi & Zhang, Zhiwei & Wang, Zhuo & Wei, Ruizeng & Wang, Lei & He, Huan & Wu, Xixiu, 2023. "Resilience enhancement of distribution network under typhoon disaster based on two-stage stochastic programming," Applied Energy, Elsevier, vol. 338(C).
    14. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    15. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    16. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    17. Aithal, Avinash & Li, Gen & Wu, Jianzhong & Yu, James, 2018. "Performance of an electrical distribution network with Soft Open Point during a grid side AC fault," Applied Energy, Elsevier, vol. 227(C), pages 262-272.
    18. Deakin, Matthew & Sarantakos, Ilias & Greenwood, David & Bialek, Janusz & Taylor, Phil C. & Walker, Sara, 2023. "Comparative analysis of services from soft open points using cost–benefit analysis," Applied Energy, Elsevier, vol. 333(C).
    19. Zhang, Heng & Zhang, Shenxi & Cheng, Haozhong & Li, Zheng & Gu, Qingfa & Tian, Xueqin, 2022. "Boosting the power grid resilience under typhoon disasters by coordinated scheduling of wind energy and conventional generators," Renewable Energy, Elsevier, vol. 200(C), pages 303-319.
    20. Bustos, Cristian & Watts, David & Olivares, Daniel, 2019. "The evolution over time of Distributed Energy Resource’s penetration: A robust framework to assess the future impact of prosumage under different tariff designs," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.