IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14207-d958845.html
   My bibliography  Save this article

The Key Technology of Smart Energy System and Its Disciplinary Teaching Reform Measures

Author

Listed:
  • Dongdong Zhang

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Jun Tian

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Hui-Hwang Goh

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Hui Liu

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Xiang Li

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Hongyu Zhu

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Xinzhang Wu

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China
    School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China)

Abstract

Based on the rapid development of new energy technology, modern information technology, intelligent management technology and different countries’ strategic demand and deployment in the field of energy, the construction of intelligent energy systems is booming with the combination of new energy technology and Internet technology. The Energy Internet is the representative product of intelligent energy systems at the present stage. Its advantages are the effective promotion of energy saving, consumption reduction and optimization of deployment, thus improving the energy system. However, the large-scale construction of the Energy Internet requires a large number of professionals. In order to meet the needs of Energy Internet construction, the talent training mode of higher education is facing new challenges. To cultivate talents in Energy Internet construction, an effective measure is to reform the teaching system based on the current electrical engineering major in universities. This paper investigates the development and construction of the Energy Internet and the current situation of the electrical engineering discipline and puts forward teaching reform measures to transform the traditional electrical engineering discipline into an Energy Internet engineering discipline, considering course structure design, examination form, teacher allocation and teaching mode. This is important for promoting the large-scale construction of the Energy Internet and improving the competitiveness of graduates in the electrical engineering field.

Suggested Citation

  • Dongdong Zhang & Jun Tian & Hui-Hwang Goh & Hui Liu & Xiang Li & Hongyu Zhu & Xinzhang Wu, 2022. "The Key Technology of Smart Energy System and Its Disciplinary Teaching Reform Measures," Sustainability, MDPI, vol. 14(21), pages 1-29, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14207-:d:958845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
    2. Zhang, Dongdong & Zhu, Hongyu & Zhang, Hongcai & Goh, Hui Hwang & Liu, Hui & Wu, Thomas, 2022. "An optimized design of residential integrated energy system considering the power-to-gas technology with multi-functional characteristics," Energy, Elsevier, vol. 238(PA).
    3. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    4. Wu, Ying & Wu, Yanpeng & Guerrero, Josep M. & Vasquez, Juan C., 2021. "A comprehensive overview of framework for developing sustainable energy internet: From things-based energy network to services-based management system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    6. Jiani Wu & Nguyen Khoi Tran, 2018. "Application of Blockchain Technology in Sustainable Energy Systems: An Overview," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianlong Wang & Weilong Wang & Yong Liu, 2024. "RETRACTED ARTICLE: Exploring the impact of clean energy interconnections on sustainable economic growth in China," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-32, June.
    2. Yichang Zhang & Sha He & Min Pang & Qiong Li, 2023. "Green Technology Innovation of Energy Internet Enterprises: Study on Influencing Factors under Dual Carbon Goals," Energies, MDPI, vol. 16(3), pages 1-16, January.
    3. Aleksander Jakimowicz, 2022. "The Energy Transition as a Super Wicked Problem: The Energy Sector in the Era of Prosumer Capitalism," Energies, MDPI, vol. 15(23), pages 1-31, December.
    4. Zhu, Shuai & Song, Malin & Lim, Ming Kim & Wang, Jianlin & Zhao, Jiajia, 2020. "The development of energy blockchain and its implications for China's energy sector," Resources Policy, Elsevier, vol. 66(C).
    5. József Magyari & Krisztina Hegedüs & Botond Sinóros-Szabó, 2022. "Integration Opportunities of Power-to-Gas and Internet-of-Things Technical Advancements: A Systematic Literature Review," Energies, MDPI, vol. 15(19), pages 1-19, September.
    6. Min Wu & Wuhua Chen & Xiaohong Tian, 2022. "Optimal Energy Consumption Path Planning for Quadrotor UAV Transmission Tower Inspection Based on Simulated Annealing Algorithm," Energies, MDPI, vol. 15(21), pages 1-17, October.
    7. Feng Xue & Kang Chang & Wei Li & Qin Wang & Haitao Zhao & Hui Zhang & Yiyang Ni & Wenchao Xia, 2022. "Blockchain Smart Contract-Enabled Secure Energy Trading for Electric Vehicles," Energies, MDPI, vol. 15(18), pages 1-15, September.
    8. Athanasios Ioannis Arvanitidis & Vivek Agarwal & Miltiadis Alamaniotis, 2023. "Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(11), pages 1-23, May.
    9. Abdollahzadeh, Gholamhossein & Sharifzadeh, Mohammad Sharif & Sklenička, Petr & Azadi, Hossein, 2023. "Adaptive capacity of farming systems to climate change in Iran: Application of composite index approach," Agricultural Systems, Elsevier, vol. 204(C).
    10. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    11. Xinhui Lu & Kaile Zhou & Felix T. S. Chan & Shanlin Yang, 2017. "Optimal scheduling of household appliances for smart home energy management considering demand response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1639-1653, September.
    12. Qingle Pang & Lin Ye & Houlei Gao & Xinian Li & Yang Zheng & Chenbin He, 2021. "Penalty Electricity Price-Based Optimal Control for Distribution Networks," Energies, MDPI, vol. 14(7), pages 1-16, March.
    13. Yi, Yuxin & Zhang, Liming & Du, Lei & Sun, Helin, 2024. "Cross-regional integration of renewable energy and corporate carbon emissions: Evidence from China's cross-regional surplus renewable energy spot trading pilot," Energy Economics, Elsevier, vol. 135(C).
    14. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    15. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    16. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    17. Ernest Barceló & Katarina Dimić-Mišić & Monir Imani & Vesna Spasojević Brkić & Michael Hummel & Patrick Gane, 2023. "Regulatory Paradigm and Challenge for Blockchain Integration of Decentralized Systems: Example—Renewable Energy Grids," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    18. Hong, Bowen & Zhang, Weitong & Zhou, Yue & Chen, Jian & Xiang, Yue & Mu, Yunfei, 2018. "Energy-Internet-oriented microgrid energy management system architecture and its application in China," Applied Energy, Elsevier, vol. 228(C), pages 2153-2164.
    19. Xin Wang & Jun Yang & Lei Chen & Jifeng He, 2017. "Application of Liquid Hydrogen with SMES for Efficient Use of Renewable Energy in the Energy Internet," Energies, MDPI, vol. 10(2), pages 1-20, February.
    20. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14207-:d:958845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.