IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v121y2018icp66-80.html
   My bibliography  Save this article

Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGs

Author

Listed:
  • Ben Hamida, Imen
  • Salah, Saoussen Brini
  • Msahli, Faouzi
  • Mimouni, Mohamed Faouzi

Abstract

Several studies of distribution network enhancement focused only on the optimization of either the integration of distributed generations (DG) or network reconfiguration. However, very few researches have been done for distribution network reconfiguration simultaneously with the DG location and sizing. This paper presents a multi-objective management operations based on network reconfiguration in parallel with renewable DGs allocation and sizing for minimizing active power loss, annual operation costs (installation, maintenance, and active power loss costs) and pollutant gas emissions. The time sequence variation in wind speed, solar irradiation and load are taken into consideration. An efficient evolutionary technique based on the Pareto optimality is adopted to solve the problem. A fuzzy set theory is used to select the best compromise solution among obtained Pareto set. The obtained results prove the efficiency and the accuracy of the suggested method for the network manager to find the optimal network configuration simultaneously with DG location and sizing considering multiple criteria.

Suggested Citation

  • Ben Hamida, Imen & Salah, Saoussen Brini & Msahli, Faouzi & Mimouni, Mohamed Faouzi, 2018. "Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGs," Renewable Energy, Elsevier, vol. 121(C), pages 66-80.
  • Handle: RePEc:eee:renene:v:121:y:2018:i:c:p:66-80
    DOI: 10.1016/j.renene.2017.12.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117313186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.12.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kanwar, Neeraj & Gupta, Nikhil & Niazi, K.R. & Swarnkar, Anil & Bansal, R.C., 2017. "Simultaneous allocation of distributed energy resource using improved particle swarm optimization," Applied Energy, Elsevier, vol. 185(P2), pages 1684-1693.
    2. Yuji Ohya & Takashi Karasudani, 2010. "A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology," Energies, MDPI, vol. 3(4), pages 1-16, March.
    3. Hung, Duong Quoc & Mithulananthan, N., 2014. "Loss reduction and loadability enhancement with DG: A dual-index analytical approach," Applied Energy, Elsevier, vol. 115(C), pages 233-241.
    4. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    5. Tan, Wen-Shan & Hassan, Mohammad Yusri & Majid, Md Shah & Abdul Rahman, Hasimah, 2013. "Optimal distributed renewable generation planning: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 626-645.
    6. Niknam, Taher & Fard, Abdollah Kavousi & Seifi, Alireza, 2012. "Distribution feeder reconfiguration considering fuel cell/wind/photovoltaic power plants," Renewable Energy, Elsevier, vol. 37(1), pages 213-225.
    7. Ali, E.S. & Abd Elazim, S.M. & Abdelaziz, A.Y., 2017. "Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations," Renewable Energy, Elsevier, vol. 101(C), pages 1311-1324.
    8. Esmaeili, Mobin & Sedighizadeh, Mostafa & Esmaili, Masoud, 2016. "Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty," Energy, Elsevier, vol. 103(C), pages 86-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadi, Bahman & Ceylan, Oguzhan & Ozdemir, Aydogan & Fotuhi-Firuzabad, Mahmoud, 2022. "A multi-objective framework for distributed energy resources planning and storage management," Applied Energy, Elsevier, vol. 314(C).
    2. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2022. "A Mixed-Integer Linear Programming Model for the Simultaneous Optimal Distribution Network Reconfiguration and Optimal Placement of Distributed Generation," Energies, MDPI, vol. 15(9), pages 1-26, April.
    3. O. D. Montoya & W. Gil-González & J. C. Hernández & D. A. Giral-Ramírez & A. Medina-Quesada, 2020. "A Mixed-Integer Nonlinear Programming Model for Optimal Reconfiguration of DC Distribution Feeders," Energies, MDPI, vol. 13(17), pages 1-22, August.
    4. Teketay Mulu Beza & Yen-Chih Huang & Cheng-Chien Kuo, 2020. "A Hybrid Optimization Approach for Power Loss Reduction and DG Penetration Level Increment in Electrical Distribution Network," Energies, MDPI, vol. 13(22), pages 1-17, November.
    5. Mahmoud M. Sayed & Mohamed Y. Mahdy & Shady H. E. Abdel Aleem & Hosam K. M. Youssef & Tarek A. Boghdady, 2022. "Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions," Energies, MDPI, vol. 15(6), pages 1-27, March.
    6. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    7. Manuel S. Alvarez-Alvarado & Johnny Rengifo & Rommel M. Gallegos-Núñez & José G. Rivera-Mora & Holguer H. Noriega & Washington Velasquez & Daniel L. Donaldson & Carlos D. Rodríguez-Gallegos, 2022. "Particle Swarm Optimization for Optimal Frequency Response with High Penetration of Photovoltaic and Wind Generation," Energies, MDPI, vol. 15(22), pages 1-12, November.
    8. Xiao, Hao & Pei, Wei & Deng, Wei & Ma, Tengfei & Zhang, Shizhong & Kong, Li, 2021. "Enhancing risk control ability of distribution network for improved renewable energy integration through flexible DC interconnection," Applied Energy, Elsevier, vol. 284(C).
    9. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Fatma Yaprakdal & Mustafa Baysal & Amjad Anvari-Moghaddam, 2019. "Optimal Operational Scheduling of Reconfigurable Microgrids in Presence of Renewable Energy Sources," Energies, MDPI, vol. 12(10), pages 1-17, May.
    11. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    12. Ola Badran & Jafar Jallad, 2023. "Multi-Objective Decision Approach for Optimal Real-Time Switching Sequence of Network Reconfiguration Realizing Maximum Load Capacity," Energies, MDPI, vol. 16(19), pages 1-32, September.
    13. Fatma Yaprakdal & M. Berkay Yılmaz & Mustafa Baysal & Amjad Anvari-Moghaddam, 2020. "A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid," Sustainability, MDPI, vol. 12(4), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    2. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    3. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    4. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    5. Li, Yang & Feng, Bo & Wang, Bin & Sun, Shuchao, 2022. "Joint planning of distributed generations and energy storage in active distribution networks: A Bi-Level programming approach," Energy, Elsevier, vol. 245(C).
    6. Sultana, U. & Khairuddin, Azhar B. & Mokhtar, A.S. & Zareen, N. & Sultana, Beenish, 2016. "Grey wolf optimizer based placement and sizing of multiple distributed generation in the distribution system," Energy, Elsevier, vol. 111(C), pages 525-536.
    7. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    8. Syed Ali Abbas Kazmi & Abdul Kashif Janjua & Dong Ryeol Shin, 2018. "Enhanced Voltage Stability Assessment Index Based Planning Approach for Mesh Distribution Systems," Energies, MDPI, vol. 11(5), pages 1-36, May.
    9. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    10. Azizivahed, Ali & Narimani, Hossein & Naderi, Ehsan & Fathi, Mehdi & Narimani, Mohammad Rasoul, 2017. "A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration," Energy, Elsevier, vol. 138(C), pages 355-373.
    11. Mahmoud M. Sayed & Mohamed Y. Mahdy & Shady H. E. Abdel Aleem & Hosam K. M. Youssef & Tarek A. Boghdady, 2022. "Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions," Energies, MDPI, vol. 15(6), pages 1-27, March.
    12. Zubo, Rana.H.A. & Mokryani, Geev & Rajamani, Haile-Selassie & Aghaei, Jamshid & Niknam, Taher & Pillai, Prashant, 2017. "Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1177-1198.
    13. Azizivahed, Ali & Narimani, Hossein & Fathi, Mehdi & Naderi, Ehsan & Safarpour, Hamid Reza & Narimani, Mohammad Rasoul, 2018. "Multi-objective dynamic distribution feeder reconfiguration in automated distribution systems," Energy, Elsevier, vol. 147(C), pages 896-914.
    14. Zeeshan Memon Anjum & Dalila Mat Said & Mohammad Yusri Hassan & Zohaib Hussain Leghari & Gul Sahar, 2022. "Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-38, April.
    15. Teketay Mulu Beza & Yen-Chih Huang & Cheng-Chien Kuo, 2020. "A Hybrid Optimization Approach for Power Loss Reduction and DG Penetration Level Increment in Electrical Distribution Network," Energies, MDPI, vol. 13(22), pages 1-17, November.
    16. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    17. Boroumandfar, Gholamreza & Khajehzadeh, Alimorad & Eslami, Mahdiyeh & Syah, Rahmad B.Y., 2023. "Information gap decision theory with risk aversion strategy for robust planning of hybrid photovoltaic/wind/battery storage system in distribution networks considering uncertainty," Energy, Elsevier, vol. 278(PA).
    18. Ehsan, Ali & Yang, Qiang, 2019. "State-of-the-art techniques for modelling of uncertainties in active distribution network planning: A review," Applied Energy, Elsevier, vol. 239(C), pages 1509-1523.
    19. Mena, Rodrigo & Hennebel, Martin & Li, Yan-Fu & Zio, Enrico, 2016. "A multi-objective optimization framework for risk-controlled integration of renewable generation into electric power systems," Energy, Elsevier, vol. 106(C), pages 712-727.
    20. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:121:y:2018:i:c:p:66-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.