IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v103y2016icp86-99.html
   My bibliography  Save this article

Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty

Author

Listed:
  • Esmaeili, Mobin
  • Sedighizadeh, Mostafa
  • Esmaili, Masoud

Abstract

In this paper, a multi-objective framework is proposed for simultaneous network reconfiguration and power allocation of DGs (Distributed Generations) in distribution networks. The optimization problem has objective functions of minimizing power losses, operation cost, and pollutant gas emissions as well as maximizing the voltage stability index subject to different power system constraints. The uncertainty of loads is modeled using the TFN (Triangular Fuzzy Number) technique. A novel solution method called MOHBB-BC (Multi-objective Hybrid Big Bang-Big Crunch) is implemented to solve the optimization problem. The MOHBB-BC derives a set of non-dominated Pareto solutions and accumulates them in a retention called Archive. The diversity of Pareto solutions conserved by applying a crowding distance operator and afterwards, the ‘best compromised’ Pareto solution is selected using a fuzzy decision maker. The proposed method is tested on two test systems of 33-bus and 25-bus in different cases including unbalanced three-phase loads. Results obtained from test cases elaborate that the MOHBB-BC results in more diversified Pareto solutions implying a better exploration capability even with a higher fitness. In addition, considering load uncertainty leads to a more realistic solution than deterministic loads but with higher level of power losses.

Suggested Citation

  • Esmaeili, Mobin & Sedighizadeh, Mostafa & Esmaili, Masoud, 2016. "Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty," Energy, Elsevier, vol. 103(C), pages 86-99.
  • Handle: RePEc:eee:energy:v:103:y:2016:i:c:p:86-99
    DOI: 10.1016/j.energy.2016.02.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:103:y:2016:i:c:p:86-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.