IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v37y2012i1p213-225.html
   My bibliography  Save this article

Distribution feeder reconfiguration considering fuel cell/wind/photovoltaic power plants

Author

Listed:
  • Niknam, Taher
  • Fard, Abdollah Kavousi
  • Seifi, Alireza

Abstract

In this paper a new method based on multi-objective modified Honey Bee Mating Optimization (MHBMO) algorithm is presented to investigate the DFR problem with the consideration effect of the renewable energy sources (RESs). In the proposed algorithm, a new mating process is suggested to overcome the shortcomings which exist in the original HBMO. During the optimization process, the proposed algorithm finds a set of non-dominated (Pareto) optimal solutions which are stored in an external memory called repository. Also a fuzzy clustering technique is utilized to handle the size of the repository in the specified limits. Moreover, a fuzzy-based decision maker is adopted to select the ‘best compromised’ solution among the non-dominated optimal solutions of multi-objective optimization problem. In order to evaluate the feasibility and effectiveness of the proposed algorithm, two standard distribution systems are used as case studies.

Suggested Citation

  • Niknam, Taher & Fard, Abdollah Kavousi & Seifi, Alireza, 2012. "Distribution feeder reconfiguration considering fuel cell/wind/photovoltaic power plants," Renewable Energy, Elsevier, vol. 37(1), pages 213-225.
  • Handle: RePEc:eee:renene:v:37:y:2012:i:1:p:213-225
    DOI: 10.1016/j.renene.2011.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111003090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Parm Pal & Singh, Sukhmeet, 2010. "Realistic generation cost of solar photovoltaic electricity," Renewable Energy, Elsevier, vol. 35(3), pages 563-569.
    2. Niknam, Taher & Meymand, Hamed Zeinoddini & Nayeripour, Majid, 2010. "A practical algorithm for optimal operation management of distribution network including fuel cell power plants," Renewable Energy, Elsevier, vol. 35(8), pages 1696-1714.
    3. Ro, K & Rahman, S, 2003. "Control of grid-connected fuel cell plants for enhancement of power system stability," Renewable Energy, Elsevier, vol. 28(3), pages 397-407.
    4. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    5. Liu, Tong & Xu, Gang & Cai, Peng & Tian, Longhu & Huang, Qili, 2011. "Development forecast of renewable energy power generation in China and its influence on the GHG control strategy of the country," Renewable Energy, Elsevier, vol. 36(4), pages 1284-1292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben Hamida, Imen & Salah, Saoussen Brini & Msahli, Faouzi & Mimouni, Mohamed Faouzi, 2018. "Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGs," Renewable Energy, Elsevier, vol. 121(C), pages 66-80.
    2. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    3. Kavousi-Fard, Abdollah & Niknam, Taher, 2014. "Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view," Energy, Elsevier, vol. 64(C), pages 342-354.
    4. Azizivahed, Ali & Narimani, Hossein & Fathi, Mehdi & Naderi, Ehsan & Safarpour, Hamid Reza & Narimani, Mohammad Rasoul, 2018. "Multi-objective dynamic distribution feeder reconfiguration in automated distribution systems," Energy, Elsevier, vol. 147(C), pages 896-914.
    5. Maleki, Akbar & Ameri, Mehran & Keynia, Farshid, 2015. "Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 552-563.
    6. Chankook Park & Minkyu Kim, 2021. "A Study on the Characteristics of Academic Topics Related to Renewable Energy Using the Structural Topic Modeling and the Weak Signal Concept," Energies, MDPI, vol. 14(5), pages 1-24, March.
    7. Kamel, Rashad M. & Alsaffar, Mohammad A. & Habib, M.K., 2016. "Novel and simple scheme for Micro-Grid protection by connecting its loads neutral points: A review on Micro-Grid protection techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 931-942.
    8. Vahidinasab, Vahid, 2014. "Optimal distributed energy resources planning in a competitive electricity market: Multiobjective optimization and probabilistic design," Renewable Energy, Elsevier, vol. 66(C), pages 354-363.
    9. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    10. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    11. Baziar, Aliasghar & Kavousi-Fard, Abdollah, 2013. "Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices," Renewable Energy, Elsevier, vol. 59(C), pages 158-166.
    12. Akbar Maleki & Marc A. Rosen & Fathollah Pourfayaz, 2017. "Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    13. Azizivahed, Ali & Narimani, Hossein & Naderi, Ehsan & Fathi, Mehdi & Narimani, Mohammad Rasoul, 2017. "A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration," Energy, Elsevier, vol. 138(C), pages 355-373.
    14. kianmehr, Ehsan & Nikkhah, Saman & Rabiee, Abbas, 2019. "Multi-objective stochastic model for joint optimal allocation of DG units and network reconfiguration from DG owner’s and DisCo’s perspectives," Renewable Energy, Elsevier, vol. 132(C), pages 471-485.
    15. Sultana, Beenish & Mustafa, M.W. & Sultana, U. & Bhatti, Abdul Rauf, 2016. "Review on reliability improvement and power loss reduction in distribution system via network reconfiguration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 297-310.
    16. Sedighizadeh, Mostafa & Esmaili, Masoud & Esmaeili, Mobin, 2014. "Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems," Energy, Elsevier, vol. 76(C), pages 920-930.
    17. Mahmoud M. Sayed & Mohamed Y. Mahdy & Shady H. E. Abdel Aleem & Hosam K. M. Youssef & Tarek A. Boghdady, 2022. "Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions," Energies, MDPI, vol. 15(6), pages 1-27, March.
    18. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    19. Badran, Ola & Mekhilef, Saad & Mokhlis, Hazlie & Dahalan, Wardiah, 2017. "Optimal reconfiguration of distribution system connected with distributed generations: A review of different methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 854-867.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    2. Niknam, Taher & Kavousi Fard, Abdollah & Baziar, Aliasghar, 2012. "Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants," Energy, Elsevier, vol. 42(1), pages 563-573.
    3. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    4. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    5. Velo, R. & Osorio, L. & Fernández, M.D. & Rodríguez, M.R., 2014. "An economic analysis of a stand-alone and grid-connected cattle farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 883-890.
    6. Vahidinasab, Vahid, 2014. "Optimal distributed energy resources planning in a competitive electricity market: Multiobjective optimization and probabilistic design," Renewable Energy, Elsevier, vol. 66(C), pages 354-363.
    7. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    8. Ghaith, Ahmad F. & Epplin, Francis M. & Frazier, R. Scott, 2017. "Economics of grid-tied household solar panel systems versus grid-only electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 407-424.
    9. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    10. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
    11. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    12. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    13. Nithya Saiprasad & Akhtar Kalam & Aladin Zayegh, 2019. "Triple Bottom Line Analysis and Optimum Sizing of Renewable Energy Using Improved Hybrid Optimization Employing the Genetic Algorithm: A Case Study from India," Energies, MDPI, vol. 12(3), pages 1-23, January.
    14. Aagreh, Yaser & Al-Ghzawi, Audai, 2013. "Feasibility of utilizing renewable energy systems for a small hotel in Ajloun city, Jordan," Applied Energy, Elsevier, vol. 103(C), pages 25-31.
    15. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    16. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    17. Diab, Fahd & Lan, Hai & Ali, Salwa, 2016. "Novel comparison study between the hybrid renewable energy systems on land and on ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 452-463.
    18. Bin Ye & Jingjing Jiang & Lixin Miao & Peng Yang & Ji Li & Bo Shen, 2015. "Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model," Energies, MDPI, vol. 8(11), pages 1-19, November.
    19. Mirzahosseini, Alireza Hajiseyed & Taheri, Taraneh, 2012. "Environmental, technical and financial feasibility study of solar power plants by RETScreen, according to the targeting of energy subsidies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2806-2811.
    20. Dursun, Bahtiyar, 2012. "Determination of the optimum hybrid renewable power generating systems for Kavakli campus of Kirklareli University, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6183-6190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:37:y:2012:i:1:p:213-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.