IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8565-d974220.html
   My bibliography  Save this article

Particle Swarm Optimization for Optimal Frequency Response with High Penetration of Photovoltaic and Wind Generation

Author

Listed:
  • Manuel S. Alvarez-Alvarado

    (Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador)

  • Johnny Rengifo

    (Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador)

  • Rommel M. Gallegos-Núñez

    (Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador)

  • José G. Rivera-Mora

    (Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador)

  • Holguer H. Noriega

    (Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador)

  • Washington Velasquez

    (Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador)

  • Daniel L. Donaldson

    (Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Carlos D. Rodríguez-Gallegos

    (Solar Energy Research Institute of Singapore (SERIS), National University of Singapore (NUS), Singapore 117574, Singapore)

Abstract

As the installation of solar-photovoltaic and wind-generation systems continue to grow, the location must be strategically selected to maintain a reliable grid. However, such strategies are commonly subject to system adequacy constraints, while system security constraints (e.g., frequency stability, voltage limits) are vaguely explored. This may lead to inaccuracies in the optimal placement of the renewables, and thus maximum benefits may not be achieved. In this context, this paper proposes an optimization-based mathematical framework to design a robust distributed generation system, able to keep system stability in a desired range under system perturbance. The optimum placement of wind and solar renewable energies that minimizes the impact on system stability in terms of the standard frequency deviation is obtained through particle swarm optimization, which is developed in Python and executed in PowerFactory-DIgSILENT. The results reveal that the proposed approach has the potential to reduce the influence of disturbances, enhancing critical clearance time before frequency collapse and supporting secure power system operation.

Suggested Citation

  • Manuel S. Alvarez-Alvarado & Johnny Rengifo & Rommel M. Gallegos-Núñez & José G. Rivera-Mora & Holguer H. Noriega & Washington Velasquez & Daniel L. Donaldson & Carlos D. Rodríguez-Gallegos, 2022. "Particle Swarm Optimization for Optimal Frequency Response with High Penetration of Photovoltaic and Wind Generation," Energies, MDPI, vol. 15(22), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8565-:d:974220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ben Hamida, Imen & Salah, Saoussen Brini & Msahli, Faouzi & Mimouni, Mohamed Faouzi, 2018. "Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGs," Renewable Energy, Elsevier, vol. 121(C), pages 66-80.
    2. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    3. Amirhossein Sajadi & Luka Strezoski & Vladimir Strezoski & Marija Prica & Kenneth A. Loparo, 2019. "Integration of renewable energy systems and challenges for dynamics, control, and automation of electrical power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    4. Wu, Wei & Skye, Harrison M. & Domanski, Piotr A., 2018. "Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings," Applied Energy, Elsevier, vol. 212(C), pages 577-591.
    5. Rai, Alan & Nunn, Oliver, 2020. "On the impact of increasing penetration of variable renewables on electricity spot price extremes in Australia," Economic Analysis and Policy, Elsevier, vol. 67(C), pages 67-86.
    6. Luay Elkhidir & Khalid Khan & Mohammad Al-Muhaini & Muhammad Khalid, 2022. "Enhancing Transient Response and Voltage Stability of Renewable Integrated Microgrids," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    7. Diego Carrión & Edwin García & Manuel Jaramillo & Jorge W. González, 2021. "A Novel Methodology for Optimal SVC Location Considering N-1 Contingencies and Reactive Power Flows Reconfiguration," Energies, MDPI, vol. 14(20), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    2. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Weifeng Xu & Bing Yu & Qing Song & Liguo Weng & Man Luo & Fan Zhang, 2022. "Economic and Low-Carbon-Oriented Distribution Network Planning Considering the Uncertainties of Photovoltaic Generation and Load Demand to Achieve Their Reliability," Energies, MDPI, vol. 15(24), pages 1-15, December.
    4. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    5. Francisco Quinteros & Diego Carrión & Manuel Jaramillo, 2022. "Optimal Power Systems Restoration Based on Energy Quality and Stability Criteria," Energies, MDPI, vol. 15(6), pages 1-23, March.
    6. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    7. Pouria Abbasi & Masih Alavy & Pavel Belansky & Marc A. Rosen, 2024. "Assessment of Environmental Impacts of Thermal Caisson Geothermal Systems," Resources, MDPI, vol. 13(3), pages 1-22, March.
    8. Jaime Pilatásig & Diego Carrión & Manuel Jaramillo, 2022. "Resilience Maximization in Electrical Power Systems through Switching of Power Transmission Lines," Energies, MDPI, vol. 15(21), pages 1-15, November.
    9. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2022. "The role of electricity flows and renewable electricity production in the behaviour of electricity prices in Spain," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 885-900.
    10. Yuehong Lu & Mohammed Alghassab & Manuel S. Alvarez-Alvarado & Hasan Gunduz & Zafar A. Khan & Muhammad Imran, 2020. "Optimal Distribution of Renewable Energy Systems Considering Aging and Long-Term Weather Effect in Net-Zero Energy Building Design," Sustainability, MDPI, vol. 12(14), pages 1-20, July.
    11. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    12. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    13. Manuel Dario Jaramillo & Diego Francisco Carrión & Jorge Paul Muñoz, 2023. "A Novel Methodology for Strengthening Stability in Electrical Power Systems by Considering Fast Voltage Stability Index under N − 1 Scenarios," Energies, MDPI, vol. 16(8), pages 1-23, April.
    14. Jerónimo Ramos-Teodoro & Adrián Giménez-Miralles & Francisco Rodríguez & Manuel Berenguel, 2020. "A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    15. Deng, Jingchuan & Li, Hongru & Hu, Jinxing & Liu, Zhenyu, 2021. "A new wind speed scenario generation method based on spatiotemporal dependency structure," Renewable Energy, Elsevier, vol. 163(C), pages 1951-1962.
    16. Alshehri, Faisal & Beck, Stephen & Ingham, Derek & Ma, Lin & Pourkashanian, Mohammed, 2021. "Sensitivity analysis of a vertical geothermal heat pump system in a hot dry climate," Renewable Energy, Elsevier, vol. 178(C), pages 785-801.
    17. Yang Zhang & Yuehong Lu & Changlong Wang & Zhijia Huang & Tao Lv, 2021. "Reward–Penalty Mechanism Based on Daily Energy Consumption for Net-Zero Energy Buildings," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    18. José Adriano da Costa & David Alves Castelo Branco & Max Chianca Pimentel Filho & Manoel Firmino de Medeiros Júnior & Neilton Fidelis da Silva, 2019. "Optimal Sizing of Photovoltaic Generation in Radial Distribution Systems Using Lagrange Multipliers," Energies, MDPI, vol. 12(9), pages 1-19, May.
    19. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2022. "A Mixed-Integer Linear Programming Model for the Simultaneous Optimal Distribution Network Reconfiguration and Optimal Placement of Distributed Generation," Energies, MDPI, vol. 15(9), pages 1-26, April.
    20. Gianpiero Colangelo & Gianluigi Spirto & Marco Milanese & Arturo de Risi, 2021. "Progresses in Analytical Design of Distribution Grids and Energy Storage," Energies, MDPI, vol. 14(14), pages 1-43, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8565-:d:974220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.