IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7850-d950906.html
   My bibliography  Save this article

Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review

Author

Listed:
  • Mahesh Kumar

    (Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Sindh, Pakistan)

  • Amir Mahmood Soomro

    (Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Sindh, Pakistan)

  • Waqar Uddin

    (Electrical Engineering Department, National University of Technology, Islamabad 44000, Pakistan)

  • Laveet Kumar

    (Department of Mechanical Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Sindh, Pakistan)

Abstract

For over a decade, distributed generations (DGs) have sufficiently convinced the researchers that they are the economic and environment-friendly solution that can be integrated with the centralized generations. The optimal planning of distributed generations requires the appropriate location and sizing and their corresponding control with various power network types to obtain the best of the technical, economical, commercial, and regulatory objectives. Most of these objectives are conflicting in nature and require multi-objective solutions. Therefore, this paper brings a comprehensive literature review and a critical analysis of the state of the art of the optimal multi-objective planning of DG installation in the power network with different objective functions and their constraints. The paper considers the adoption of optimization techniques for distributed generation planning in radial distribution systems from different power system performance viewpoints; it considers the use of different DG types, distribution models, DG variables, and mathematical formulations; and it considers the participation of different countries in the stated DG placement and sizing problem. Moreover, the summary of the literature review and critical analysis of this article helps the researchers and engineers to explore the research gap and to find the future recommendations for the robust optimal planning of the DGs working with various objectives and algorithms. The paper considers the adoption of uncertainties on the load and generation side, the introduction of DGs with energy storage backups, and the testing of DG placement and sizing on large and complex distribution networks.

Suggested Citation

  • Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7850-:d:950906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7850/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7850/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed A. Tolba & Hegazy Rezk & Vladimir Tulsky & Ahmed A. Zaki Diab & Almoataz Y. Abdelaziz & Artem Vanin, 2018. "Impact of Optimum Allocation of Renewable Distributed Generations on Distribution Networks Based on Different Optimization Algorithms," Energies, MDPI, vol. 11(1), pages 1-33, January.
    2. Muttaqi, K.M. & Le, An D.T. & Aghaei, J. & Mahboubi-Moghaddam, E. & Negnevitsky, M. & Ledwich, G., 2016. "Optimizing distributed generation parameters through economic feasibility assessment," Applied Energy, Elsevier, vol. 165(C), pages 893-903.
    3. Çelik, Doğan & Meral, Mehmet Emin, 2019. "A novel control strategy for grid connected distributed generation system to maximize power delivery capability," Energy, Elsevier, vol. 186(C).
    4. Kumar Mahesh & Perumal Nallagownden & Irraivan Elamvazuthi, 2016. "Advanced Pareto Front Non-Dominated Sorting Multi-Objective Particle Swarm Optimization for Optimal Placement and Sizing of Distributed Generation," Energies, MDPI, vol. 9(12), pages 1-23, November.
    5. Rastgou, Abdollah & Moshtagh, Jamal & Bahramara, Salah, 2018. "Improved harmony search algorithm for electrical distribution network expansion planning in the presence of distributed generators," Energy, Elsevier, vol. 151(C), pages 178-202.
    6. Wanxing Sheng & Ke-yan Liu & Yongmei Liu & Xiaoli Meng & Xiaohui Song, 2013. "A New DG Multiobjective Optimization Method Based on an Improved Evolutionary Algorithm," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-11, April.
    7. Alarcon-Rodriguez, Arturo & Ault, Graham & Galloway, Stuart, 2010. "Multi-objective planning of distributed energy resources: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1353-1366, June.
    8. Pesaran H.A., Mahmoud & Nazari-Heris, Morteza & Mohammadi-Ivatloo, Behnam & Seyedi, Heresh, 2020. "A hybrid genetic particle swarm optimization for distributed generation allocation in power distribution networks," Energy, Elsevier, vol. 209(C).
    9. Behera, Sasmita & Sahoo, Subhrajit & Pati, B.B., 2015. "A review on optimization algorithms and application to wind energy integration to grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 214-227.
    10. Niknam, Taher & Taheri, Seyed Iman & Aghaei, Jamshid & Tabatabaei, Sajad & Nayeripour, Majid, 2011. "A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources," Applied Energy, Elsevier, vol. 88(12), pages 4817-4830.
    11. Kayal, Partha & Chanda, C.K., 2015. "Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network," Renewable Energy, Elsevier, vol. 75(C), pages 173-186.
    12. Zubo, Rana.H.A. & Mokryani, Geev & Rajamani, Haile-Selassie & Aghaei, Jamshid & Niknam, Taher & Pillai, Prashant, 2017. "Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1177-1198.
    13. Ali, E.S. & Abd Elazim, S.M. & Abdelaziz, A.Y., 2017. "Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations," Renewable Energy, Elsevier, vol. 101(C), pages 1311-1324.
    14. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    15. Wenxia Liu & Huiting Xu & Shuya Niu & Jiang Xie, 2016. "Optimal Distributed Generator Allocation Method Considering Voltage Control Cost," Sustainability, MDPI, vol. 8(2), pages 1-20, February.
    16. Doagou-Mojarrad, Hasan & Gharehpetian, G.B. & Rastegar, H. & Olamaei, Javad, 2013. "Optimal placement and sizing of DG (distributed generation) units in distribution networks by novel hybrid evolutionary algorithm," Energy, Elsevier, vol. 54(C), pages 129-138.
    17. Sultana, U. & Khairuddin, Azhar B. & Mokhtar, A.S. & Zareen, N. & Sultana, Beenish, 2016. "Grey wolf optimizer based placement and sizing of multiple distributed generation in the distribution system," Energy, Elsevier, vol. 111(C), pages 525-536.
    18. Mahesh Kumar & Perumal Nallagownden & Irraivan Elamvazuthi, 2017. "Optimal Placement and Sizing of Renewable Distributed Generations and Capacitor Banks into Radial Distribution Systems," Energies, MDPI, vol. 10(6), pages 1-25, June.
    19. Quadri, Imran Ahmad & Bhowmick, S. & Joshi, D., 2018. "A comprehensive technique for optimal allocation of distributed energy resources in radial distribution systems," Applied Energy, Elsevier, vol. 211(C), pages 1245-1260.
    20. Vahidinasab, Vahid, 2014. "Optimal distributed energy resources planning in a competitive electricity market: Multiobjective optimization and probabilistic design," Renewable Energy, Elsevier, vol. 66(C), pages 354-363.
    21. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2013. "Analytical strategies for renewable distributed generation integration considering energy loss minimization," Applied Energy, Elsevier, vol. 105(C), pages 75-85.
    22. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    23. Navdeep Kaur & Sanjay Kumar Jain, 2017. "Multi-Objective Optimization Approach for Placement of Multiple DGs for Voltage Sensitive Loads," Energies, MDPI, vol. 10(11), pages 1-17, October.
    24. Luis Fernando Grisales-Noreña & Daniel Gonzalez Montoya & Carlos Andres Ramos-Paja, 2018. "Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques," Energies, MDPI, vol. 11(4), pages 1-27, April.
    25. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    26. Xiangang Peng & Lixiang Lin & Weiqin Zheng & Yi Liu, 2015. "Crisscross Optimization Algorithm and Monte Carlo Simulation for Solving Optimal Distributed Generation Allocation Problem," Energies, MDPI, vol. 8(12), pages 1-19, December.
    27. Suman Bhullar & Smarajit Ghosh, 2018. "Optimal Integration of Multi Distributed Generation Sources in Radial Distribution Networks Using a Hybrid Algorithm," Energies, MDPI, vol. 11(3), pages 1-15, March.
    28. Esmaili, Masoud & Firozjaee, Esmail Chaktan & Shayanfar, Heidar Ali, 2014. "Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints," Applied Energy, Elsevier, vol. 113(C), pages 1252-1260.
    29. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    30. Gitizadeh, Mohsen & Vahed, Ali Azizi & Aghaei, Jamshid, 2013. "Multistage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms," Applied Energy, Elsevier, vol. 101(C), pages 655-666.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph P. Varghese & Kumaravel Sundaramoorthy & Ashok Sankaran, 2023. "Development and Validation of a Load Flow Based Scheme for Optimum Placing and Quantifying of Distributed Generation for Alleviation of Congestion in Interconnected Power Systems," Energies, MDPI, vol. 16(6), pages 1-24, March.
    2. Weifeng Xu & Bing Yu & Qing Song & Liguo Weng & Man Luo & Fan Zhang, 2022. "Economic and Low-Carbon-Oriented Distribution Network Planning Considering the Uncertainties of Photovoltaic Generation and Load Demand to Achieve Their Reliability," Energies, MDPI, vol. 15(24), pages 1-15, December.
    3. Hongbo Gao & Shuang Qiu & Jun Fang & Nan Ma & Jiye Wang & Kun Cheng & Hui Wang & Yidong Zhu & Dawei Hu & Hengyu Liu & Jun Wang, 2023. "Short-Term Prediction of PV Power Based on Combined Modal Decomposition and NARX-LSTM-LightGBM," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    4. Ardiaty Arief & Muhammad Bachtiar Nappu, 2023. "Novel Hybrid Modified Modal Analysis and Continuation Power Flow Method for Unity Power Factor DER Placement," Energies, MDPI, vol. 16(4), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahesh Kumar & Perumal Nallagownden & Irraivan Elamvazuthi, 2017. "Optimal Placement and Sizing of Renewable Distributed Generations and Capacitor Banks into Radial Distribution Systems," Energies, MDPI, vol. 10(6), pages 1-25, June.
    2. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    3. Fu, Xueqian & Chen, Haoyong & Cai, Runqing & Yang, Ping, 2015. "Optimal allocation and adaptive VAR control of PV-DG in distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 173-182.
    4. Muttaqi, K.M. & Le, An D.T. & Aghaei, J. & Mahboubi-Moghaddam, E. & Negnevitsky, M. & Ledwich, G., 2016. "Optimizing distributed generation parameters through economic feasibility assessment," Applied Energy, Elsevier, vol. 165(C), pages 893-903.
    5. Vikas Singh Bhadoria & Nidhi Singh Pal & Vivek Shrivastava, 2019. "Artificial immune system based approach for size and location optimization of distributed generation in distribution system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 339-349, June.
    6. Bayat, A. & Bagheri, A., 2019. "Optimal active and reactive power allocation in distribution networks using a novel heuristic approach," Applied Energy, Elsevier, vol. 233, pages 71-85.
    7. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    8. Zeeshan Memon Anjum & Dalila Mat Said & Mohammad Yusri Hassan & Zohaib Hussain Leghari & Gul Sahar, 2022. "Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-38, April.
    9. Mahmoud G. Hemeida & Salem Alkhalaf & Al-Attar A. Mohamed & Abdalla Ahmed Ibrahim & Tomonobu Senjyu, 2020. "Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO)," Energies, MDPI, vol. 13(15), pages 1-37, July.
    10. Muhammad Waqas Khalil & Abdullah Altamimi & Syed Ali Abbas Kazmi & Zafar A. Khan & Dong Ryeol Shin, 2022. "Integration of Distributed Generations in Smart Distribution Networks Using Multi-Criteria Based Sustainable Planning Approach," Sustainability, MDPI, vol. 15(1), pages 1-40, December.
    11. Peesapati, Rajagopal & Yadav, Vinod Kumar & Kumar, Niranjan, 2018. "Flower pollination algorithm based multi-objective congestion management considering optimal capacities of distributed generations," Energy, Elsevier, vol. 147(C), pages 980-994.
    12. Kadir Doğanşahin & Bedri Kekezoğlu & Recep Yumurtacı & Ozan Erdinç & João P. S. Catalão, 2018. "Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads," Energies, MDPI, vol. 11(1), pages 1-16, January.
    13. J. Rajalakshmi & S. Durairaj, 2021. "Application of multi-objective optimization algorithm for siting and sizing of distributed generations in distribution networks," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 267-289, February.
    14. Chandrasekaran Venkatesan & Raju Kannadasan & Mohammed H. Alsharif & Mun-Kyeom Kim & Jamel Nebhen, 2021. "A Novel Multiobjective Hybrid Technique for Siting and Sizing of Distributed Generation and Capacitor Banks in Radial Distribution Systems," Sustainability, MDPI, vol. 13(6), pages 1-34, March.
    15. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    16. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    17. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    18. Esmaili, Masoud & Firozjaee, Esmail Chaktan & Shayanfar, Heidar Ali, 2014. "Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints," Applied Energy, Elsevier, vol. 113(C), pages 1252-1260.
    19. Luo, Lizi & Gu, Wei & Zhang, Xiao-Ping & Cao, Ge & Wang, Weijun & Zhu, Gang & You, Dingjun & Wu, Zhi, 2018. "Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM)," Applied Energy, Elsevier, vol. 210(C), pages 1092-1100.
    20. Das, Bikash & Mukherjee, V. & Das, Debapriya, 2019. "Optimum DG placement for known power injection from utility/substation by a novel zero bus load flow approach," Energy, Elsevier, vol. 175(C), pages 228-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7850-:d:950906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.