IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v284y2021ics030626192031761x.html
   My bibliography  Save this article

Enhancing risk control ability of distribution network for improved renewable energy integration through flexible DC interconnection

Author

Listed:
  • Xiao, Hao
  • Pei, Wei
  • Deng, Wei
  • Ma, Tengfei
  • Zhang, Shizhong
  • Kong, Li

Abstract

The increased penetration of distributed renewable energy into modern distribution networks has resulted in a significant rise in the system operational risk. However, the risk control ability of traditional open-loop AC distribution networks is greatly limited due to the inherent restriction of the network structure, which hinders the integration of larger-scale renewable energy into the power grid. To address this issue, this paper developed an effective risk assessment model and risk averse method for fully utilizing flexible DC interconnections to enhance the risk control ability and to improve the penetration of renewable energy in distribution networks. Moreover, aiming at the complex coupling risk characteristics between the AC and DC system that are imposed by the DC interconnection and considering the inefficiency of traditional Monte Carlo sampling risk assessment methods, an effective point-estimation-based risk assessment method is proposed that conducts a limited number of sequential AC/DC power flow calculations with estimation points constructed from random input variables, thereby the operational risk of the system is effectively realized. On this basis, a risk-averse multi-objective optimization model is further established for minimizing both the operational risk and the expected network power loss, and an improved kriging-model-assisted multi-object gray wolf algorithm is proposed for quickly supporting the model solution. Finally, a fuzzy clustering method is presented for effectively identifying the optimal Pareto solution. A case study is conducted on an AC/DC hybrid system with three AC networks and one DC network. The results demonstrate that the proposed method can substantially improve the risk assessment efficiency compared with the traditional Monte Carlo method. In addition, the risk-averse optimization method can effectively reduce the system risk and improve the operational reliability as well as the penetration of renewable energy.

Suggested Citation

  • Xiao, Hao & Pei, Wei & Deng, Wei & Ma, Tengfei & Zhang, Shizhong & Kong, Li, 2021. "Enhancing risk control ability of distribution network for improved renewable energy integration through flexible DC interconnection," Applied Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:appene:v:284:y:2021:i:c:s030626192031761x
    DOI: 10.1016/j.apenergy.2020.116387
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192031761X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Shizhong & Pei, Wei & Xiao, Hao & Yang, Yanhong & Ye, Hua & Kong, Li, 2020. "Enhancing the survival time of multiple islanding microgrids through composable modular energy router after natural disasters," Applied Energy, Elsevier, vol. 270(C).
    2. Liu, Haibin & Davidson, Rachel A. & Apanasovich, Tatiyana V., 2008. "Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 897-912.
    3. Ben Hamida, Imen & Salah, Saoussen Brini & Msahli, Faouzi & Mimouni, Mohamed Faouzi, 2018. "Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGs," Renewable Energy, Elsevier, vol. 121(C), pages 66-80.
    4. Long, Chao & Wu, Jianzhong & Thomas, Lee & Jenkins, Nick, 2016. "Optimal operation of soft open points in medium voltage electrical distribution networks with distributed generation," Applied Energy, Elsevier, vol. 184(C), pages 427-437.
    5. Liu, Zhe & Wang, Dan & Jia, Hongjie & Djilali, Ned, 2014. "Power system operation risk analysis considering charging load self-management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 136(C), pages 662-670.
    6. Yıldıran, Uğur & Kayahan, İsmail, 2018. "Risk-averse stochastic model predictive control-based real-time operation method for a wind energy generation system supported by a pumped hydro storage unit," Applied Energy, Elsevier, vol. 226(C), pages 631-643.
    7. Rafi, Fida Hasan Md & Hossain, M.J. & Rahman, Md Shamiur & Taghizadeh, Seyedfoad, 2020. "An overview of unbalance compensation techniques using power electronic converters for active distribution systems with renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong Yu & Shan Gao & Xin Zhao & Yu Liu & Sicheng Wang & Tiancheng E. Song, 2023. "Alternating Iterative Power-Flow Algorithm for Hybrid AC–DC Power Grids Incorporating LCCs and VSCs," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    2. Guo, Yi & Ming, Bo & Huang, Qiang & Wang, Yimin & Zheng, Xudong & Zhang, Wei, 2022. "Risk-averse day-ahead generation scheduling of hydro–wind–photovoltaic complementary systems considering the steady requirement of power delivery," Applied Energy, Elsevier, vol. 309(C).
    3. Xiao, Hao & Pei, Wei & Wu, Lei & Ma, Li & Ma, Tengfei & Hua, Weiqi, 2023. "A novel deep learning based probabilistic power flow method for Multi-Microgrids distribution system with incomplete network information," Applied Energy, Elsevier, vol. 335(C).
    4. Jiang, Jianhua & Ming, Bo & Huang, Qiang & Guo, Yi & Shang, Jia’nan & Jurasz, Jakub & Liu, Pan, 2023. "A holistic techno-economic evaluation framework for sizing renewable power plant in a hydro-based hybrid generation system," Applied Energy, Elsevier, vol. 348(C).
    5. Huang, Yan & Ju, Yuntao & Ma, Kang & Short, Michael & Chen, Tao & Zhang, Ruosi & Lin, Yi, 2022. "Three-phase optimal power flow for networked microgrids based on semidefinite programming convex relaxation," Applied Energy, Elsevier, vol. 305(C).
    6. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    7. Wei Dai & Yang Gao & Hui Hwang Goh & Jiangyi Jian & Zhihong Zeng & Yuelin Liu, 2024. "A Non-Iterative Coordinated Scheduling Method for a AC-DC Hybrid Distribution Network Based on a Projection of the Feasible Region of Tie Line Transmission Power," Energies, MDPI, vol. 17(6), pages 1-20, March.
    8. Jiang, Jianhua & Ming, Bo & Liu, Pan & Huang, Qiang & Guo, Yi & Chang, Jianxia & Zhang, Wei, 2023. "Refining long-term operation of large hydro–photovoltaic–wind hybrid systems by nesting response functions," Renewable Energy, Elsevier, vol. 204(C), pages 359-371.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris N. Trakas & Mathaios Panteli & Nikos D. Hatziargyriou & Pierluigi Mancarella, 2019. "Spatial Risk Analysis of Power Systems Resilience During Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 195-211, January.
    2. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    4. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    5. Seung‐Ryong Han & Seth D. Guikema & Steven M. Quiring, 2009. "Improving the Predictive Accuracy of Hurricane Power Outage Forecasts Using Generalized Additive Models," Risk Analysis, John Wiley & Sons, vol. 29(10), pages 1443-1453, October.
    6. Mehmet Baran Ulak & Ayberk Kocatepe & Lalitha Madhavi Konila Sriram & Eren Erman Ozguven & Reza Arghandeh, 2018. "Assessment of the hurricane-induced power outages from a demographic, socioeconomic, and transportation perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1489-1508, July.
    7. Guo, Su & Zheng, Kun & He, Yi & Kurban, Aynur, 2023. "The artificial intelligence-assisted short-term optimal scheduling of a cascade hydro-photovoltaic complementary system with hybrid time steps," Renewable Energy, Elsevier, vol. 202(C), pages 1169-1189.
    8. Su, Chengguo & Cheng, Chuntian & Wang, Peilin & Shen, Jianjian & Wu, Xinyu, 2019. "Optimization model for long-distance integrated transmission of wind farms and pumped-storage hydropower plants," Applied Energy, Elsevier, vol. 242(C), pages 285-293.
    9. Roshanak Nateghi & Seth D. Guikema & Yue (Grace) Wu & C. Bayan Bruss, 2016. "Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 4-15, January.
    10. Fatma Yaprakdal & Mustafa Baysal & Amjad Anvari-Moghaddam, 2019. "Optimal Operational Scheduling of Reconfigurable Microgrids in Presence of Renewable Energy Sources," Energies, MDPI, vol. 12(10), pages 1-17, May.
    11. Seung‐Ryong Han & David Rosowsky & Seth Guikema, 2014. "Integrating Models and Data to Estimate the Structural Reliability of Utility Poles During Hurricanes," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1079-1094, June.
    12. Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.
    13. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.
    14. Seth D. Guikema & Steven M. Quiring & Seung‐Ryong Han, 2010. "Prestorm Estimation of Hurricane Damage to Electric Power Distribution Systems," Risk Analysis, John Wiley & Sons, vol. 30(12), pages 1744-1752, December.
    15. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Hui Hou & Shiwen Yu & Hongbin Wang & Yong Huang & Hao Wu & Yan Xu & Xianqiang Li & Hao Geng, 2019. "Risk Assessment and Its Visualization of Power Tower under Typhoon Disaster Based on Machine Learning Algorithms," Energies, MDPI, vol. 12(2), pages 1-23, January.
    17. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    18. Xu, Hao & Gardoni, Paolo, 2020. "Conditional formulation for the calibration of multi-level random fields with incomplete data," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. D. Brent McRoberts & Steven M. Quiring & Seth D. Guikema, 2018. "Improving Hurricane Power Outage Prediction Models Through the Inclusion of Local Environmental Factors," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2722-2737, December.
    20. Aithal, Avinash & Li, Gen & Wu, Jianzhong & Yu, James, 2018. "Performance of an electrical distribution network with Soft Open Point during a grid side AC fault," Applied Energy, Elsevier, vol. 227(C), pages 262-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:284:y:2021:i:c:s030626192031761x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.