IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v147y2018icp896-914.html
   My bibliography  Save this article

Multi-objective dynamic distribution feeder reconfiguration in automated distribution systems

Author

Listed:
  • Azizivahed, Ali
  • Narimani, Hossein
  • Fathi, Mehdi
  • Naderi, Ehsan
  • Safarpour, Hamid Reza
  • Narimani, Mohammad Rasoul

Abstract

Distribution feeder reconfiguration is an important operation problem in distribution system which has been used to improve the efficiency of distribution systems by obtaining the best combination of on/off status of the switches. It is a mixed integer non-linear program problem and hence hard to solve which necessitate employing proper optimization algorithms to converge to global optima or find near global optima. Smart grid implementation has made loads and electricity prices more volatile and as a result makes operational power system problems to be much more time dependent and more complicated rather than before. To cope with these time dependencies, it is crucial to extend the problems on different time intervals. To this end the dynamic distribution feeder reconfiguration, extension of the problem over multiple time intervals, with various objective functions including operation cost, power loss and energy not supplied is developed and investigated in this study. Time varying electricity prices and different load levels juxtapose with the effect of distributed generations are taken into account in order to generalize the proposed approach. Inherent complexities of distribution feeder reconfiguration problem have made proposing solution techniques an ongoing research topic. A new optimization algorithm is proposed to solve the proposed problem.

Suggested Citation

  • Azizivahed, Ali & Narimani, Hossein & Fathi, Mehdi & Naderi, Ehsan & Safarpour, Hamid Reza & Narimani, Mohammad Rasoul, 2018. "Multi-objective dynamic distribution feeder reconfiguration in automated distribution systems," Energy, Elsevier, vol. 147(C), pages 896-914.
  • Handle: RePEc:eee:energy:v:147:y:2018:i:c:p:896-914
    DOI: 10.1016/j.energy.2018.01.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218301300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arasteh, Hamidreza & Sepasian, Mohammad Sadegh & Vahidinasab, Vahid, 2016. "An aggregated model for coordinated planning and reconfiguration of electric distribution networks," Energy, Elsevier, vol. 94(C), pages 786-798.
    2. Das, Sangeeta & Das, Debapriya & Patra, Amit, 2017. "Reconfiguration of distribution networks with optimal placement of distributed generations in the presence of remote voltage controlled bus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 772-781.
    3. Azizivahed, Ali & Narimani, Hossein & Naderi, Ehsan & Fathi, Mehdi & Narimani, Mohammad Rasoul, 2017. "A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration," Energy, Elsevier, vol. 138(C), pages 355-373.
    4. Niknam, Taher & Fard, Abdollah Kavousi & Seifi, Alireza, 2012. "Distribution feeder reconfiguration considering fuel cell/wind/photovoltaic power plants," Renewable Energy, Elsevier, vol. 37(1), pages 213-225.
    5. Mohammad Rasoul Narimani & Maigha & Jhi-Young Joo & Mariesa Crow, 2017. "Multi-Objective Dynamic Economic Dispatch with Demand Side Management of Residential Loads and Electric Vehicles," Energies, MDPI, vol. 10(5), pages 1-18, May.
    6. Narimani, Mohammad Rasoul & Azizipanah-Abarghooee, Rasoul & Zoghdar-Moghadam-Shahrekohne, Behrouz & Gholami, Kayvan, 2013. "A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type," Energy, Elsevier, vol. 49(C), pages 119-136.
    7. Esmaeili, Mobin & Sedighizadeh, Mostafa & Esmaili, Masoud, 2016. "Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty," Energy, Elsevier, vol. 103(C), pages 86-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tolabi, H.B. & Ara, A. Lashkar & Hosseini, R., 2020. "A new thief and police algorithm and its application in simultaneous reconfiguration with optimal allocation of capacitor and distributed generation units," Energy, Elsevier, vol. 203(C).
    2. Azad-Farsani, Ehsan & Sardou, Iman Goroohi & Abedini, Saeed, 2021. "Distribution Network Reconfiguration based on LMP at DG connected busses using game theory and self-adaptive FWA," Energy, Elsevier, vol. 215(PB).
    3. Mostafa Abdo & Salah Kamel & Mohamed Ebeed & Juan Yu & Francisco Jurado, 2018. "Solving Non-Smooth Optimal Power Flow Problems Using a Developed Grey Wolf Optimizer," Energies, MDPI, vol. 11(7), pages 1-16, June.
    4. Wang, Hong-Jiang & Pan, Jeng-Shyang & Nguyen, Trong-The & Weng, Shaowei, 2022. "Distribution network reconfiguration with distributed generation based on parallel slime mould algorithm," Energy, Elsevier, vol. 244(PB).
    5. Bo Li & Panpan Zhang & Xiangjun Li & Shengxian Cao, 2019. "Distributed Absorption and Half-Search Approach for Economic Dispatch Problem in Smart Grids," Energies, MDPI, vol. 12(8), pages 1-21, April.
    6. Narimani, Hossein & Razavi, Seyed-Ehsan & Azizivahed, Ali & Naderi, Ehsan & Fathi, Mehdi & Ataei, Mohammad H. & Narimani, Mohammad Rasoul, 2018. "A multi-objective framework for multi-area economic emission dispatch," Energy, Elsevier, vol. 154(C), pages 126-142.
    7. Li, J.Y. & Chen, J.J. & Wang, Y.X. & Chen, W.G., 2024. "Combining multi-step reconfiguration with many-objective reduction as iterative bi-level scheduling for stochastic distribution network," Energy, Elsevier, vol. 290(C).
    8. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies," Applied Energy, Elsevier, vol. 239(C), pages 356-372.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Azizivahed, Ali & Narimani, Hossein & Naderi, Ehsan & Fathi, Mehdi & Narimani, Mohammad Rasoul, 2017. "A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration," Energy, Elsevier, vol. 138(C), pages 355-373.
    3. Narimani, Hossein & Razavi, Seyed-Ehsan & Azizivahed, Ali & Naderi, Ehsan & Fathi, Mehdi & Ataei, Mohammad H. & Narimani, Mohammad Rasoul, 2018. "A multi-objective framework for multi-area economic emission dispatch," Energy, Elsevier, vol. 154(C), pages 126-142.
    4. Mahmoud M. Sayed & Mohamed Y. Mahdy & Shady H. E. Abdel Aleem & Hosam K. M. Youssef & Tarek A. Boghdady, 2022. "Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions," Energies, MDPI, vol. 15(6), pages 1-27, March.
    5. Ben Hamida, Imen & Salah, Saoussen Brini & Msahli, Faouzi & Mimouni, Mohamed Faouzi, 2018. "Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGs," Renewable Energy, Elsevier, vol. 121(C), pages 66-80.
    6. kianmehr, Ehsan & Nikkhah, Saman & Rabiee, Abbas, 2019. "Multi-objective stochastic model for joint optimal allocation of DG units and network reconfiguration from DG owner’s and DisCo’s perspectives," Renewable Energy, Elsevier, vol. 132(C), pages 471-485.
    7. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    8. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    9. Vahidinasab, Vahid, 2014. "Optimal distributed energy resources planning in a competitive electricity market: Multiobjective optimization and probabilistic design," Renewable Energy, Elsevier, vol. 66(C), pages 354-363.
    10. Li, J.Y. & Chen, J.J. & Wang, Y.X. & Chen, W.G., 2024. "Combining multi-step reconfiguration with many-objective reduction as iterative bi-level scheduling for stochastic distribution network," Energy, Elsevier, vol. 290(C).
    11. Zixiao Ban & Fei Teng & Huifeng Zhang & Shuo Li & Geyang Xiao & Yajuan Guan, 2023. "Distributed Fixed-Time Energy Management for Port Microgrid Considering Transmissive Efficiency," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
    12. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    13. Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.
    14. Srikanth Reddy, K. & Panwar, Lokesh & Panigrahi, B.K. & Kumar, Rajesh, 2018. "Modeling and analysis of profit based self scheduling of GENCO in electricity markets with renewable energy penetration and emission constraints," Renewable Energy, Elsevier, vol. 116(PA), pages 48-63.
    15. Ashraf Ramadan & Mohamed Ebeed & Salah Kamel & Almoataz Y. Abdelaziz & Hassan Haes Alhelou, 2021. "Scenario-Based Stochastic Framework for Optimal Planning of Distribution Systems Including Renewable-Based DG Units," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    16. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    17. Liu, Yuan & He, Li & Shen, Jing, 2017. "Optimization-based provincial hybrid renewable and non-renewable energy planning – A case study of Shanxi, China," Energy, Elsevier, vol. 128(C), pages 839-856.
    18. Marcin Pluta & Artur Wyrwa & Wojciech Suwała & Janusz Zyśk & Maciej Raczyński & Stanisław Tokarski, 2020. "A Generalized Unit Commitment and Economic Dispatch Approach for Analysing the Polish Power System under High Renewable Penetration," Energies, MDPI, vol. 13(8), pages 1-18, April.
    19. Roy, Nibir Baran & Das, Debapriya, 2024. "Stochastic power allocation of distributed tri-generation plants and energy storage units in a zero bus microgrid with electric vehicles and demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    20. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:147:y:2018:i:c:p:896-914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.