IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v11y2007i9p1913-1965.html
   My bibliography  Save this article

Solar energy storage using phase change materials

Author

Listed:
  • Kenisarin, Murat
  • Mahkamov, Khamid

Abstract

The continuous increase in the level of greenhouse gas emissions and the climb in fuel prices are the main driving forces behind efforts to more effectively utilise various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. However, the large-scale utilisation of this form of energy is possible only if the effective technology for its storage can be developed with acceptable capital and running costs. One of prospective techniques of storing solar energy is the application of phase change materials (PCMs). Unfortunately, prior to the large-scale practical application of this technology, it is necessary to resolve numerous problems at the research and development stage. This paper looks at the current state of research in this particular field, with the main focus being on the assessment of the thermal properties of various PCMs, methods of heat transfer enhancement and design configurations of heat storage facilities to be used as a part of solar passive and active space heating systems, greenhouses and solar cooking.

Suggested Citation

  • Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
  • Handle: RePEc:eee:rensus:v:11:y:2007:i:9:p:1913-1965
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(06)00063-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bo, He & Gustafsson, E.Mari & Setterwall, Fredrik, 1999. "Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems," Energy, Elsevier, vol. 24(12), pages 1015-1028.
    2. Kaygusuz, Kamil, 1995. "Performance of solar-assisted heat-pump systems," Applied Energy, Elsevier, vol. 51(2), pages 93-109.
    3. El-Sebaii, A.A. & Domański, R. & Jaworski, M., 1994. "Experimental and theoretical investigation of a box-type solar cooker with multi-step inner reflectors," Energy, Elsevier, vol. 19(10), pages 1011-1021.
    4. Hasan, A. & Sayigh, A.A., 1994. "Some fatty acids as phase-change thermal energy storage materials," Renewable Energy, Elsevier, vol. 4(1), pages 69-76.
    5. Sarı, Ahmet & Kaygusuz, Kamil, 2001. "Thermal performance of myristic acid as a phase change material for energy storage application," Renewable Energy, Elsevier, vol. 24(2), pages 303-317.
    6. Sarı, A & Kaygusuz, K, 2003. "Some fatty acids used for latent heat storage: thermal stability and corrosion of metals with respect to thermal cycling," Renewable Energy, Elsevier, vol. 28(6), pages 939-948.
    7. Domanski, R. & El-Sebaii, A.A. & Jaworski, M., 1995. "Cooking during off-sunshine hours using PCMs as storage media," Energy, Elsevier, vol. 20(7), pages 607-616.
    8. Tunçbilek, Kadir & Sari, Ahmet & Tarhan, Sefa & Ergüneş, Gazanfer & Kaygusuz, Kamil, 2005. "Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications," Energy, Elsevier, vol. 30(5), pages 677-692.
    9. Jurinak, J.J. & Abdel-Khalik, S.I., 1979. "On the performance of air-based solar heating systems utilizing phase-change energy storage," Energy, Elsevier, vol. 4(4), pages 503-522.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Yanping & Zhang, Nan & Tao, Wenquan & Cao, Xiaoling & He, Yaling, 2014. "Fatty acids as phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 482-498.
    2. Tunçbilek, Kadir & Sari, Ahmet & Tarhan, Sefa & Ergüneş, Gazanfer & Kaygusuz, Kamil, 2005. "Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications," Energy, Elsevier, vol. 30(5), pages 677-692.
    3. Karaipekli, Ali & Sarı, Ahmet & Kaygusuz, Kamil, 2007. "Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications," Renewable Energy, Elsevier, vol. 32(13), pages 2201-2210.
    4. Cai, Yibing & Gao, Chuntao & Zhang, Ting & Zhang, Zhen & Wei, Qufu & Du, Jinmei & Hu, Yuan & Song, Lei, 2013. "Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats," Renewable Energy, Elsevier, vol. 57(C), pages 163-170.
    5. Karaipekli, Ali & Sarı, Ahmet, 2008. "Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 33(12), pages 2599-2605.
    6. Rathod, Manish K. & Banerjee, Jyotirmay, 2013. "Thermal stability of phase change materials used in latent heat energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 246-258.
    7. Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
    8. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    9. Gunasekara, Saman Nimali & Martin, Viktoria & Chiu, Justin Ningwei, 2017. "Phase equilibrium in the design of phase change materials for thermal energy storage: State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 558-581.
    10. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
    11. Golestaneh, Seyyed Iman & Karimi, Gholamreza & Babapoor, Aziz & Torabi, Farshid, 2018. "Thermal performance of co-electrospun fatty acid nanofiber composites in the presence of nanoparticles," Applied Energy, Elsevier, vol. 212(C), pages 552-564.
    12. Fang, Guiyin & Li, Hui & Chen, Zhi & Liu, Xu, 2010. "Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials," Energy, Elsevier, vol. 35(12), pages 4622-4626.
    13. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    14. El-Sebaii, A.A. & Ibrahim, A., 2005. "Experimental testing of a box-type solar cooker using the standard procedure of cooking power," Renewable Energy, Elsevier, vol. 30(12), pages 1861-1871.
    15. M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
    16. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. İnce, Şeyma & Seki, Yoldas & Akif Ezan, Mehmet & Turgut, Alpaslan & Erek, Aytunc, 2015. "Thermal properties of myristic acid/graphite nanoplates composite phase change materials," Renewable Energy, Elsevier, vol. 75(C), pages 243-248.
    18. He, Hongtao & Zhao, Pin & Yue, Qinyan & Gao, Baoyu & Yue, Dongting & Li, Qian, 2015. "A novel polynary fatty acid/sludge ceramsite composite phase change materials and its applications in building energy conservation," Renewable Energy, Elsevier, vol. 76(C), pages 45-52.
    19. Zhao, Pin & Yue, Qinyan & He, Hongtao & Gao, Baoyu & Wang, Yan & Li, Qian, 2014. "Study on phase diagram of fatty acids mixtures to determine eutectic temperatures and the corresponding mixing proportions," Applied Energy, Elsevier, vol. 115(C), pages 483-490.
    20. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:11:y:2007:i:9:p:1913-1965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.