IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v114y2017ipbp1077-1089.html
   My bibliography  Save this article

Biodiesel production from canola oil using novel Li/TiO2 as a heterogeneous catalyst prepared via impregnation method

Author

Listed:
  • Alsharifi, Mariam
  • Znad, Hussein
  • Hena, Sufia
  • Ang, Ming

Abstract

This study focused on the development of heterogeneous catalyst for transesterification process by implanting lithium onto TiO2 by wet impregnation process. A series of Li/TiO2 was prepared with different amounts of Li (20, 30, 40 wt %) and at different calcination temperatures (450, 600, 750). The Li/TiO2 catalysts were characterized by several spectroscopic and analytical techniques like XRD, FT-IR, BET, TG-DSC and FESEM. The XRD study revealed that the insertion of Li improved the catalyst efficiency without any alteration in structure of TiO2. Li/TiO2 catalysts with 30%w/w Li and calcined at 600 °C was found to be the most efficient with 98% transesterification yield. The best performance of catalyst was achieved with methanol to oil ratio of 24:1, 5 wt % of catalyst loading, at 55 °C reaction temperatures for 3 h of reaction time. The kinetic studies revealed the transesterification process was compatible with the zero order model. However the reusability decreases after every successive use.

Suggested Citation

  • Alsharifi, Mariam & Znad, Hussein & Hena, Sufia & Ang, Ming, 2017. "Biodiesel production from canola oil using novel Li/TiO2 as a heterogeneous catalyst prepared via impregnation method," Renewable Energy, Elsevier, vol. 114(PB), pages 1077-1089.
  • Handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:1077-1089
    DOI: 10.1016/j.renene.2017.07.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saba, Tony & Estephane, Jane & El Khoury, Bilal & El Khoury, Maroulla & Khazma, Mahmoud & El Zakhem, Henri & Aouad, Samer, 2016. "Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts," Renewable Energy, Elsevier, vol. 90(C), pages 301-306.
    2. Olutoye, M.A. & Wong, S.W. & Chin, L.H. & Amani, H. & Asif, M. & Hameed, B.H., 2016. "Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst," Renewable Energy, Elsevier, vol. 86(C), pages 392-398.
    3. Farooq, Muhammad & Ramli, Anita & Naeem, Abdul, 2015. "Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones," Renewable Energy, Elsevier, vol. 76(C), pages 362-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pandit, Priti R. & Fulekar, M.H., 2019. "Biodiesel production from microalgal biomass using CaO catalyst synthesized from natural waste material," Renewable Energy, Elsevier, vol. 136(C), pages 837-845.
    2. Das, Bikashbindu & Mohanty, Kaustubha, 2019. "A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud," Renewable Energy, Elsevier, vol. 143(C), pages 1791-1811.
    3. Yusuff, Adeyinka Sikiru & Gbadamosi, Afeez Olayinka & Atray, Neeraj, 2022. "Development of a zeolite supported CaO derived from chicken eggshell as active base catalyst for used cooking oil biodiesel production," Renewable Energy, Elsevier, vol. 197(C), pages 1151-1162.
    4. Li, Hui & Wang, Yongbo & Ma, Xiaoling & Guo, Min & Li, Yan & Li, Guoning & Cui, Ping & Zhou, Shoujun & Yu, Mingzhi, 2022. "Synthesis of CaO/ZrO2 based catalyst by using UiO–66(Zr) and calcium acetate for biodiesel production," Renewable Energy, Elsevier, vol. 185(C), pages 970-977.
    5. Al-Saadi, Ali & Mathan, Bobby & He, Yinghe, 2020. "Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 158(C), pages 388-399.
    6. AlSharifi, Mariam & Znad, Hussein, 2019. "Development of a lithium based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 136(C), pages 856-864.
    7. Zik, N.A.F.A. & Sulaiman, S. & Jamal, P., 2020. "Biodiesel production from waste cooking oil using calcium oxide/nanocrystal cellulose/polyvinyl alcohol catalyst in a packed bed reactor," Renewable Energy, Elsevier, vol. 155(C), pages 267-277.
    8. AlSharifi, Mariam & Znad, Hussein, 2020. "Transesterification of waste canola oil by lithium/zinc composite supported on waste chicken bone as an effective catalyst," Renewable Energy, Elsevier, vol. 151(C), pages 740-749.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Ameen & Mushtaq Ahmad & Muhammad Zafar & Mamoona Munir & Muhammad Mujtaba Mujtaba & Shazia Sultana & Rozina . & Samah Elsayed El-Khatib & Manzoore Elahi M. Soudagar & M. A. Kalam, 2022. "Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review," Sustainability, MDPI, vol. 14(12), pages 1-38, June.
    2. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    3. Yahya, Syahirah & Muhamad Wahab, Syamsul Kamar & Harun, Farah Wahida, 2020. "Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology," Renewable Energy, Elsevier, vol. 157(C), pages 164-172.
    4. Lani, Nurul Saadiah & Ngadi, Norzita & Inuwa, Ibrahim Mohammed, 2020. "New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 1266-1277.
    5. Khan, Ihtisham Wali & Naeem, Abdul & Farooq, Muhammad & Mahmood, Tahira & Ahmad, Bashir & Hamayun, Muhammad & Ahmad, Zahoor & Saeed, Tooba, 2020. "Catalytic conversion of spent frying oil into biodiesel over raw and 12-tungsto-phosphoric acid modified clay," Renewable Energy, Elsevier, vol. 155(C), pages 181-188.
    6. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    7. Yusuff, Adeyinka S. & Bhonsle, Aman K. & Bangwal, Dinesh P. & Atray, Neeraj, 2021. "Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment," Renewable Energy, Elsevier, vol. 177(C), pages 1253-1264.
    8. Sulaiman, Nur Fatin & Lee, Siew Ling & Toemen, Susilawati & Bakar, Wan Azelee Wan Abu, 2020. "Physicochemical characteristics of Cu/Zn/γ-Al2O3 catalyst and its mechanistic study in transesterification for biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 142-157.
    9. Khan, Haris Mahmood & Iqbal, Tanveer & Ali, Chaudhry Haider & Yasin, Saima & Jamil, Farrukh, 2020. "Waste quail beaks as renewable source for synthesizing novel catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 154(C), pages 1035-1043.
    10. Zhang, Yujiao & Niu, Shengli & Han, Kuihua & Li, Yingjie & Lu, Chunmei, 2021. "Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel," Renewable Energy, Elsevier, vol. 168(C), pages 981-990.
    11. Rahman, M.A., 2018. "Valorization of harmful algae E. compressa for biodiesel production in presence of chicken waste derived catalyst," Renewable Energy, Elsevier, vol. 129(PA), pages 132-140.
    12. Ching-Velasquez, Jonny & Fernández-Lafuente, Roberto & Rodrigues, Rafael C. & Plata, Vladimir & Rosales-Quintero, Arnulfo & Torrestiana-Sánchez, Beatriz & Tacias-Pascacio, Veymar G., 2020. "Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis," Renewable Energy, Elsevier, vol. 153(C), pages 1346-1354.
    13. Muñoz, Robinson & González, Aixa & Valdebenito, Fabiola & Ciudad, Gustavo & Navia, Rodrigo & Pecchi, Gina & Azócar, Laura, 2020. "Fly ash as a new versatile acid-base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 162(C), pages 1931-1939.
    14. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    15. Anietie O. Etim & Eriola Betiku & Sheriff O. Ajala & Peter J. Olaniyi & Tunde V. Ojumu, 2018. "Potential of Ripe Plantain Fruit Peels as an Ecofriendly Catalyst for Biodiesel Synthesis: Optimization by Artificial Neural Network Integrated with Genetic Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    16. Dahdah, Eliane & Estephane, Jane & Haydar, Reem & Youssef, Yara & El Khoury, Bilal & Gennequin, Cedric & Aboukaïs, Antoine & Abi-Aad, Edmond & Aouad, Samer, 2020. "Biodiesel production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment," Renewable Energy, Elsevier, vol. 146(C), pages 1242-1248.
    17. Tan, Yie Hua & Abdullah, Mohammad Omar & Kansedo, Jibrail & Mubarak, Nabisab Mujawar & Chan, Yen San & Nolasco-Hipolito, Cirilo, 2019. "Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones," Renewable Energy, Elsevier, vol. 139(C), pages 696-706.
    18. Jharna Gupta & Madhu Agarwal, 2017. "Biodiesel Production from a Mixture of Vegetable Oils Using Marble Slurry Derived Heterogeneous Catalyst," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 5(1), pages 1-5, May.
    19. Arumugam, A. & Ponnusami, V., 2019. "Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview," Renewable Energy, Elsevier, vol. 131(C), pages 459-471.
    20. Altaf, Faizah & Batool, Rida & Gill, Rohama & Rehman, Zohaib Ur & Majeed, Hammad & Ahmad, Adnan & Shafiq, Muhammad & Dastan, Davoud & Abbas, Ghazanfar & Jacob, Karl, 2021. "Synthesis and electrochemical investigations of ABPBI grafted montmorillonite based polymer electrolyte membranes for PEMFC applications," Renewable Energy, Elsevier, vol. 164(C), pages 709-728.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:1077-1089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.