IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v185y2022icp970-977.html
   My bibliography  Save this article

Synthesis of CaO/ZrO2 based catalyst by using UiO–66(Zr) and calcium acetate for biodiesel production

Author

Listed:
  • Li, Hui
  • Wang, Yongbo
  • Ma, Xiaoling
  • Guo, Min
  • Li, Yan
  • Li, Guoning
  • Cui, Ping
  • Zhou, Shoujun
  • Yu, Mingzhi

Abstract

Ca2+ ion leaching and poor pore structure are obstacles of CaO for biodiesel production. To this end, a typical Zr–based metal organic framework, UiO–66(Zr) is adopted to support calcium acetate to prepare CaO/ZrO2 catalyst. For comparison, catalyst precursor is activated in nitrogen (UCN) and air (UCA) atmosphere, respectively. Preparation factors including calcium acetate addition and activation temperature are evaluated. Moreover, effects of transesterification parameters on oil conversion are investigated and the optimized parameters are further used to examine catalyst reusability. Meanwhile, catalysts are characterized with TG, XRD, XPS, FTIR, Hammett indicator titration, N2 adsorption and desorption. Results reveal UCN calcined at 650 °C (UCN650) and UCA calcined at 700 °C (UCA700) separately exhibits the best catalytic performance. The maximum conversion of 96.99% is achieved by UCN650 with catalyst amount of 6 wt% and molar ratio of methanol to oil of 9 at 65 °C for 60 min. Even after being used 3 cycles, conversion of 92.76% is still achieved by UCN650. By contrast, UCA700 shows lower conversion of 92.94% at the first cycle with catalyst amount of 8 wt% and molar ratio of methanol to oil of 9 at 65 °C for 60 min.

Suggested Citation

  • Li, Hui & Wang, Yongbo & Ma, Xiaoling & Guo, Min & Li, Yan & Li, Guoning & Cui, Ping & Zhou, Shoujun & Yu, Mingzhi, 2022. "Synthesis of CaO/ZrO2 based catalyst by using UiO–66(Zr) and calcium acetate for biodiesel production," Renewable Energy, Elsevier, vol. 185(C), pages 970-977.
  • Handle: RePEc:eee:renene:v:185:y:2022:i:c:p:970-977
    DOI: 10.1016/j.renene.2021.12.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121018231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.12.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aslan, Volkan & Eryilmaz, Tanzer, 2020. "Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH," Energy, Elsevier, vol. 209(C).
    2. Niu, Shengli & Han, Kuihua & Lu, Chunmei & Sun, Rongyue, 2010. "Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate," Applied Energy, Elsevier, vol. 87(7), pages 2237-2242, July.
    3. Pandit, Priti R. & Fulekar, M.H., 2019. "Biodiesel production from microalgal biomass using CaO catalyst synthesized from natural waste material," Renewable Energy, Elsevier, vol. 136(C), pages 837-845.
    4. Alsharifi, Mariam & Znad, Hussein & Hena, Sufia & Ang, Ming, 2017. "Biodiesel production from canola oil using novel Li/TiO2 as a heterogeneous catalyst prepared via impregnation method," Renewable Energy, Elsevier, vol. 114(PB), pages 1077-1089.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yujiao & Niu, Shengli & Hao, Yanan & Liu, Sitong & Liu, Jisen & Han, Kuihua & Wang, Yongzheng & Lu, Chunmei, 2023. "Preparation of SrZrAl multiple oxide catalyst for produce biodiesel from acidified palm oil," Renewable Energy, Elsevier, vol. 207(C), pages 116-127.
    2. Li, Hui & Wang, Yongbo & Han, Zhihao & Wang, Tianyu & Wang, Yunpu & Liu, Chenhui & Guo, Min & Li, Guoning & Lu, Wanpeng & Yu, Mingzhi & Ma, Xiaoling, 2022. "Nanosheet like CaO/C derived from Ca-BTC for biodiesel production assisted with microwave," Applied Energy, Elsevier, vol. 326(C).
    3. Wang, Tianyu & Ma, Xiaoling & Bingwa, Ndzondelelo & Yu, Hao & Wang, Yunpu & Li, Guoning & Guo, Min & Xiao, Qiangqiang & Li, Shijie & Zhao, Xudong & Li, Hui, 2024. "A novel bimetallic CaFe-MOF derivative for transesterification: Catalytic performance, characterization, and stability," Energy, Elsevier, vol. 292(C).
    4. Yu, Hewei & Sun, Jichao & Chen, Xiuxiu & Wang, Bing & Liang, Xiaohui & Gao, Mingjie & Si, Hongyu, 2023. "Synthesis of a novel acid-base bifunctional Zn/Ca–Zr catalyst for biodiesel application: Experimental and molecular simulation studies," Renewable Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pandit, Priti R. & Fulekar, M.H., 2019. "Biodiesel production from microalgal biomass using CaO catalyst synthesized from natural waste material," Renewable Energy, Elsevier, vol. 136(C), pages 837-845.
    2. Lani, Nurul Saadiah & Ngadi, Norzita & Inuwa, Ibrahim Mohammed, 2020. "New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 1266-1277.
    3. Abu-Ghazala, Abdelmoniem H. & Abdelhady, Hosam H. & Mazhar, Amina A. & El-Deab, Mohamed S., 2022. "Valorization of hazard waste: Efficient utilization of white brick waste powder in the catalytic production of biodiesel from waste cooking oil via RSM optimization process," Renewable Energy, Elsevier, vol. 200(C), pages 1120-1133.
    4. Seffati, Kambiz & Esmaeili, Hossein & Honarvar, Bizhan & Esfandiari, Nadia, 2020. "AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat," Renewable Energy, Elsevier, vol. 147(P1), pages 25-34.
    5. Niu, Shengli & Han, Kuihua & Zhao, Jianli & Lu, Chunmei, 2011. "Experimental study on nitric oxide reduction through calcium propionate reburning," Energy, Elsevier, vol. 36(2), pages 1003-1009.
    6. Zeeshan, Muhammad & Ghazanfar, Sadia & Tariq, Muhammad & Asif, Hafiz Muhammad & Hussain, Ajaz & Usman, Muhamamd & Khan, Muhammad Ali & Mahmood, Khalid & Sirajuddin, Muhammad & Imran, Muhammad, 2023. "Synthesis of novel ternary NiO–CdO-Nd2O3 nanocomposite for biodiesel production," Renewable Energy, Elsevier, vol. 210(C), pages 800-809.
    7. Shi, Jinsong & Xu, Jianguo & Cui, Hongmin & Zhou, Youwen & Yan, Nanfu & Yan, Runhan & You, Shengyong, 2024. "N-doped hierarchically porous carbons prepared with the assistance of chemical blowing and in-situ hard template as highly efficient CO2 adsorbents: A combined experimental and theoretical study," Energy, Elsevier, vol. 294(C).
    8. Li, Hui & Liu, Fengsheng & Ma, Xiaoling & Cui, Ping & Guo, Min & Li, Yan & Gao, Yan & Zhou, Shoujun & Yu, Mingzhi, 2020. "An efficient basic heterogeneous catalyst synthesis of magnetic mesoporous Fe@C support SrO for transesterification," Renewable Energy, Elsevier, vol. 149(C), pages 816-827.
    9. AlSharifi, Mariam & Znad, Hussein, 2020. "Transesterification of waste canola oil by lithium/zinc composite supported on waste chicken bone as an effective catalyst," Renewable Energy, Elsevier, vol. 151(C), pages 740-749.
    10. Marinković, Dalibor M. & Stanković, Miroslav V. & Veličković, Ana V. & Avramović, Jelena M. & Miladinović, Marija R. & Stamenković, Olivera O. & Veljković, Vlada B. & Jovanović, Dušan M., 2016. "Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1387-1408.
    11. Ahmad, Shamshad & Chaudhary, Shalini & Pathak, Vinayak V. & Kothari, Richa & Tyagi, V.V., 2020. "Optimization of direct transesterification of Chlorella pyrenoidosa catalyzed by waste egg shell based heterogenous nano – CaO catalyst," Renewable Energy, Elsevier, vol. 160(C), pages 86-97.
    12. P. Sujin & P. M. Diaz & Ajith J. Kings & L. R. Monisha Miriam, 2023. "Sustainable biodiesel production from Ceiba penandra, Mahua longifolia, and Azadirachta indica using CaO-TiO2 nano catalyst," Energy & Environment, , vol. 34(3), pages 640-662, May.
    13. Laskar, Ikbal Bahar & Deshmukhya, Tuhin & Bhanja, Piyali & Paul, Bappi & Gupta, Rajat & Chatterjee, Sushovan, 2020. "Transesterification of soybean oil at room temperature using biowaste as catalyst; an experimental investigation on the effect of co-solvent on biodiesel yield," Renewable Energy, Elsevier, vol. 162(C), pages 98-111.
    14. Das, Bikashbindu & Mohanty, Kaustubha, 2019. "A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud," Renewable Energy, Elsevier, vol. 143(C), pages 1791-1811.
    15. Takeno, Mitsuo L. & Mendonça, Iasmin M. & Barros, Silma de S. & de Sousa Maia, Paulo J. & Pessoa Jr., Wanison A.G. & Souza, Mayane P. & Soares, Elzalina R. & Bindá, Rosane dos S. & Calderaro, Fábio L., 2021. "A novel CaO-based catalyst obtained from silver croaker (Plagioscion squamosissimus) stone for biodiesel synthesis: Waste valorization and process optimization," Renewable Energy, Elsevier, vol. 172(C), pages 1035-1045.
    16. AlSharifi, Mariam & Znad, Hussein, 2019. "Development of a lithium based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 136(C), pages 856-864.
    17. Yusuff, Adeyinka Sikiru & Gbadamosi, Afeez Olayinka & Atray, Neeraj, 2022. "Development of a zeolite supported CaO derived from chicken eggshell as active base catalyst for used cooking oil biodiesel production," Renewable Energy, Elsevier, vol. 197(C), pages 1151-1162.
    18. Zhang, Rongyan & Zhu, Fenfen & Dong, Yi & Wu, Xuemin & Sun, Yihe & Zhang, Dongrui & Zhang, Tao & Han, Meiling, 2020. "Function promotion of SO42−/Al2O3–SnO2 catalyst for biodiesel production from sewage sludge," Renewable Energy, Elsevier, vol. 147(P1), pages 275-283.
    19. Ali, Hamdy Elsayed Ahmed & El-fayoumy, Eman A. & Soliman, Ramadan M. & Elkhatat, Ahmed & Al-Meer, Saeed & Elsaid, Khaled & Hussein, Hanaa Ali & Zul Helmi Rozaini, Mohd & Azmuddin Abdullah, Mohd, 2024. "Nanoparticle applications in Algal-biorefinery for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    20. Hoora Mazaheri & Hwai Chyuan Ong & Zeynab Amini & Haji Hassan Masjuki & M. Mofijur & Chia Hung Su & Irfan Anjum Badruddin & T.M. Yunus Khan, 2021. "An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective," Energies, MDPI, vol. 14(13), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:185:y:2022:i:c:p:970-977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.