IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006410.html
   My bibliography  Save this article

An integrated method of extended STPA and BN for safety assessment of man-machine phased-mission system

Author

Listed:
  • Lu, Xin
  • Zeng, Shengkui
  • Guo, Jianbin
  • Deng, Wei
  • He, Mingjun
  • Che, Haiyang

Abstract

Man-Machine Phased-Mission System (MMPMS) usually demands the cooperation of operators with different responsibilities and machines to accomplish multi-phase missions. Its machine configuration and human organization structure may change across phases, and phase dependencies of machine failures and human errors may exist. In current studies, the safety of man-machine system is usually analyzed qualitatively by System Theoretic Process Analysis (STPA) and assessed quantitatively by the integration of STPA with Bayesian Networks (BN). These studies only focus on single-phase systems and conduct single-phase BN while cannot address the features of MMPMS. In this paper, a qualitative analysis and quantitative assessment method for phase dependencies is proposed and integrated into the method that combines STPA and BN. Firstly, four types of phase dependencies in MMPMS are identified. Secondly, new mapping rules for phase dependencies are proposed to integrate single-phase BN into a multi-phase BN. Thirdly, the quantitative assessment method for phase dependencies considering the effects of human organization structure changes are proposed to quantify the parameters of multi-phase BN. Fourthly, the safety of MMPMS can be assessed through multi-phase BN. Finally, an Unmanned Aerial Vehicle system with three-phase missions is presented as a case study to demonstrate the effectiveness of the proposed method.

Suggested Citation

  • Lu, Xin & Zeng, Shengkui & Guo, Jianbin & Deng, Wei & He, Mingjun & Che, Haiyang, 2025. "An integrated method of extended STPA and BN for safety assessment of man-machine phased-mission system," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006410
    DOI: 10.1016/j.ress.2024.110569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.