IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v232y2023ics0951832022007001.html
   My bibliography  Save this article

Reliability analysis of dynamic voting phased-mission systems

Author

Listed:
  • Wang, Chaonan
  • Xing, Liudong
  • Su, Yujie
  • Guan, Quanlong
  • Tang, Bo
  • Hu, Yuliang

Abstract

Many computing and technological systems can be modeled as a dynamic voting phased mission system (VPMS), which performs a pre-specified task in multiple consecutive phases and the number of components available for use n and the number of components required for the system operation k may vary for different phases. In addition to the changing system configurations, the failure behavior of each component may be phase-dependent due to changing load and operational environments. Furthermore, statistical dependencies across different phases take place for any given component. All those factors contribute to the difficulty and complexity of the VPMS reliability analysis. This paper suggests a new analytical modeling method based on multi-valued decision diagrams (MDD) for efficient VPMS reliability analysis. Unlike existing methods that typically require generating the system reliability model in a phase-by-phase manner and assume identical components and static k-out-of-n structure, the suggested approach encompasses a novel and fast MDD generation algorithm that takes behaviors of all the phases into consideration simultaneously, and can be applied to heterogeneous components with no limitations on their time-to-failure distribution types. Examples of VPMSs with different sizes are provided for demonstrating applications and advantages of the suggested approach.

Suggested Citation

  • Wang, Chaonan & Xing, Liudong & Su, Yujie & Guan, Quanlong & Tang, Bo & Hu, Yuliang, 2023. "Reliability analysis of dynamic voting phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022007001
    DOI: 10.1016/j.ress.2022.109085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022007001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.109085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chaonan & Xing, Liudong & Amari, Suprasad V. & Tang, Bo, 2020. "Efficient reliability analysis of dynamic k-out-of-n heterogeneous phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Wang, Chaonan & Xing, Liudong & Peng, Rui & Pan, Zhusheng, 2017. "Competing failure analysis in phased-mission systems with multiple functional dependence groups," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 24-33.
    3. Wang, Yujie & Xing, Liudong & Levitin, Gregory & Huang, Ning, 2018. "Probabilistic competing failure analysis in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 37-51.
    4. Peng, Rui & Zhai, Qingqing & Xing, Liudong & Yang, Jun, 2014. "Reliability of demand-based phased-mission systems subject to fault level coverage," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 18-25.
    5. Suprasad V. Amari & Chaonan Wang & Liudong Xing & Rahamat Mohammad, 2018. "An efficient phased-mission reliability model considering dynamic k-out-of-n subsystem redundancy," IISE Transactions, Taylor & Francis Journals, vol. 50(10), pages 868-877, October.
    6. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Cheng, Chen & Yang, Jun & Li, Lei, 2021. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state phased mission system with common bus performance sharing subjected to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Mo, Yuchang & Xing, Liudong & Amari, Suprasad V. & Bechta Dugan, Joanne, 2015. "Efficient analysis of multi-state k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 95-105.
    9. Wu, Xinyang & Yu, Haiyue & Balakrishnan, Narayanaswamy, 2022. "Modular model and algebraic phase algorithm for reliability modelling and evaluation of phased-mission systems with conflicting phase redundancy," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    10. Yin, Juan & Cui, Lirong & Sun, Yudao & Balakrishnan, Narayanaswamy, 2022. "Reliability modelling for linear and circular k-out-of-n: F systems with shared components," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2014. "Explicit and implicit methods for probabilistic common-cause failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 175-184.
    12. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Che, Haiyang, 2021. "A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    13. Wu, Xin-yang & Wu, Xiao-Yue, 2015. "Extended object-oriented Petri net model for mission reliability simulation of repairable PMS with common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 109-119.
    14. Sharifi, Mani & Taghipour, Sharareh & Abhari, Abdolreza, 2021. "Inspection interval optimization for a k-out-of-n load sharing system under a hybrid mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oszczypała, Mateusz & Konwerski, Jakub & Ziółkowski, Jarosław & Małachowski, Jerzy, 2024. "Reliability analysis and redundancy optimization of k-out-of-n systems with random variable k using continuous time Markov chain and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chaonan & Xing, Liudong & Yu, Jingui & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2023. "Phase reduction for efficient reliability analysis of dynamic k-out-of-n phased mission systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Wang, Chaonan & Xing, Liudong & Amari, Suprasad V. & Tang, Bo, 2020. "Efficient reliability analysis of dynamic k-out-of-n heterogeneous phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Zhang, Jingru & Fang, Zhigeng & Dong, Wenjie & Liu, Sifeng & Chen, Ding, 2024. "A mission success probability assessment framework for phased-mission-systems using extended graphical evaluation and review technique," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    4. Wang, Chaonan & Wang, Shuli & Xing, Liudong & Guan, Quanlong, 2023. "Efficient performability analysis of dynamic multi-state k-out-of-n: G systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Yu, Haiyue & Wu, Xinyang & Wu, Xiaoyue, 2020. "An extended object-oriented petri net model for mission reliability evaluation of phased-mission system with time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    6. Wang, Xiaolin & Xu, Jihui & Zhang, Lei & Wang, Ning, 2023. "Mission success probability optimizing of phased mission system balancing the phase backup and system risk: A novel GERT mechanism," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Wu, Xinyang & Yu, Haiyue & Balakrishnan, Narayanaswamy, 2022. "Modular model and algebraic phase algorithm for reliability modelling and evaluation of phased-mission systems with conflicting phase redundancy," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    8. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Che, Haiyang, 2021. "A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    9. Matsuoka, Takeshi, 2023. "Reliability analysis of a BWR plant system at startup stage  - analysis by the GO-FLOW methodology with consideration of loop structures and phased mission problem -," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    10. Che, Haiyang & Zeng, Shengkui & Zhao, Yingzhi & Guo, Jianbin, 2024. "Reliability assessment of multi-state weighted k-out-of-n man-machine systems considering dependent machine deterioration and human fatigue," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    11. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    12. Li, Jingkui & Lu, Yuze & Liu, Xiaona & Jiang, Xiuhong, 2023. "Reliability analysis of cold-standby phased-mission system based on GO-FLOW methodology and the universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Cheng, Chen & Yang, Jun & Li, Lei, 2021. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state phased mission system with common bus performance sharing subjected to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Li, Xiang-Yu & Li, Xiaopeng & Feng, Jianxiang & Li, Congming & Xiong, Xiaoyan & Huang, Hong-Zhong, 2023. "Reliability analysis and optimization of multi-phased spaceflight with backup missions and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Oszczypała, Mateusz & Konwerski, Jakub & Ziółkowski, Jarosław & Małachowski, Jerzy, 2024. "Reliability analysis and redundancy optimization of k-out-of-n systems with random variable k using continuous time Markov chain and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Levitin, Gregory & Finkelstein, Maxim, 2018. "Optimal mission abort policy for systems in a random environment with variable shock rate," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 11-17.
    19. Tang, Maochun & Xiahou, Tangfan & Liu, Yu, 2023. "Mission performance analysis of phased-mission systems with cross-phase competing failures," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Huan Yu & Jun Yang & Yu Zhao, 2018. "Reliability of nonrepairable phased-mission systems with common bus performance sharing," Journal of Risk and Reliability, , vol. 232(6), pages 647-660, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022007001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.