IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v224y2022ics0951832022001818.html
   My bibliography  Save this article

Optimized structure learning of Bayesian Network for investigating causation of vehicles’ on-road crashes

Author

Listed:
  • Chen, Tianyi
  • Wong, Yiik Diew
  • Shi, Xiupeng
  • Wang, Xueqin

Abstract

A vehicle's crash can be seen as a failure of microscopic road transportation system. The causal investigation of vehicles’ crashes has drawn much attention from academia and industry alike, which is of significance to road traffic safety. This study develops a structure learning method to construct Bayesian Network (BN). The BN as generated by the method can comprehensively illustrate the causal relationships between risk contributing features and vehicles’ on-road risky events (i.e. near-crash and crash). The proposed structure learning method has following three advantages: (1). considering multiple categories of features; (2). applying robust feature selection method to improve prediction performance and facilitate the explanation of causation; and (3). making a trade-off between the complexity and interpretability of BN structure. The method is applied on the Second Highway Research Program (SHRP2) Naturalistic Driving Study (NDS) database for case study. The results show that the generated optimal BN achieves satisfactory performances on both structure complexity and prediction accuracy. Besides, as compared to the BN built by the other state-of-the-art structure learning methods, the optimal BN presents superior performance on causal interpretability. Also, by performing causal inferences upon the optimal BN, this study examines and analyzes the contributions of several key features to the risky events. Several interesting findings about the features’ contributions are reported in this paper, which could provide valuable references for road safety engineering in the future.

Suggested Citation

  • Chen, Tianyi & Wong, Yiik Diew & Shi, Xiupeng & Wang, Xueqin, 2022. "Optimized structure learning of Bayesian Network for investigating causation of vehicles’ on-road crashes," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:reensy:v:224:y:2022:i:c:s0951832022001818
    DOI: 10.1016/j.ress.2022.108527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022001818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zywiec, William J. & Mazzuchi, Thomas A. & Sarkani, Shahram, 2021. "Analysis of process criticality accident risk using a metamodel-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Xu, Chengcheng & Wang, Yong & Liu, Pan & Wang, Wei & Bao, Jie, 2018. "Quantitative risk assessment of freeway crash casualty using high-resolution traffic data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 299-311.
    3. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    4. Guo, Yongjin & Zhong, Mingjun & Gao, Chao & Wang, Hongdong & Liang, Xiaofeng & Yi, Hong, 2021. "A discrete-time Bayesian network approach for reliability analysis of dynamic systems with common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, October.
    6. Yu, Yun-Chi & Gardoni, Paolo, 2022. "Predicting road blockage due to building damage following earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Huang, Wencheng & Kou, Xingyi & Zhang, Yue & Mi, Rongwei & Yin, Dezhi & Xiao, Wei & Liu, Zhanru, 2021. "Operational failure analysis of high-speed electric multiple units: A Bayesian network-K2 algorithm-expectation maximization approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    8. El-Awady, Ahmed & Ponnambalam, Kumaraswamy, 2021. "Integration of simulation and Markov Chains to support Bayesian Networks for probabilistic failure analysis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    9. Yin, Jiateng & Ren, Xianliang & Liu, Ronghui & Tang, Tao & Su, Shuai, 2022. "Quantitative analysis for resilience-based urban rail systems: A hybrid knowledge-based and data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Boakye, Jessica & Guidotti, Roberto & Gardoni, Paolo & Murphy, Colleen, 2022. "The role of transportation infrastructure on the impact of natural hazards on communities," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amini, Mostafa & Bagheri, Ali & Delen, Dursun, 2022. "Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Zhang, Jinfeng & Jin, Mei & Wan, Chengpeng & Dong, Zhijie & Wu, Xiaohong, 2024. "A Bayesian network-based model for risk modeling and scenario deduction of collision accidents of inland intelligent ships," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Jing, Peng & Wang, Baihui & Cai, Yunhao & Wang, Bichen & Huang, Jiahui & Yang, Chenglu & Jiang, Chengxi, 2023. "What is the public really concerned about the AV crash? Insights from a combined analysis of social media and questionnaire survey," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    4. Chen, Xiyuan & Ma, Xiaoping & Jia, Limin & Zhang, Zhipeng & Chen, Fei & Wang, Ruojin, 2024. "Causative analysis of freight railway accident in specific scenes using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jinjin & Wang, Rongxi & Liang, Zeming & Liu, Pengpeng & Gao, Jianmin & Wang, Zhen, 2023. "Physics-guided, data-refined fault root cause tracing framework for complex electromechanical system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Pan, Xing & Dang, Yuheng & Wang, Huixiong & Hong, Dongpao & Li, Yuehong & Deng, Hongxu, 2022. "Resilience model and recovery strategy of transportation network based on travel OD-grid analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Nguyen, Hung & Abdel-Mottaleb, Noha & Uddin, Shihab & Zhang, Qiong & Lu, Qing & Zhang, He & Li, Mingyang, 2022. "Joint maintenance planning of deteriorating co-located road and water infrastructures with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Du, Ao & Wang, Xiaowei & Xie, Yazhou & Dong, You, 2023. "Regional seismic risk and resilience assessment: Methodological development, applicability, and future research needs – An earthquake engineering perspective," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    7. Zhao, Taiyi & Tang, Yuchun & Li, Qiming & Wang, Jingquan, 2023. "Resilience-oriented network reconfiguration strategies for community emergency medical services," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    9. Liang, Xinrui & Fan, Shiqi & Lucy, John & Yang, Zaili, 2022. "Risk analysis of cargo theft from freight supply chains using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    10. Fan, Lin & Su, Huai & Wang, Wei & Zio, Enrico & Zhang, Li & Yang, Zhaoming & Peng, Shiliang & Yu, Weichao & Zuo, Lili & Zhang, Jinjun, 2022. "A systematic method for the optimization of gas supply reliability in natural gas pipeline network based on Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Taghizadeh, Mehdi & Mahsuli, Mojtaba & Poorzahedy, Hossain, 2023. "Probabilistic framework for evaluating the seismic resilience of transportation systems during emergency medical response," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    12. Wallius, Eetu & Klock, Ana Carolina Tomé & Hamari, Juho, 2022. "Playing it safe: A literature review and research agenda on motivational technologies in transportation safety," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    13. Hunte, Joshua L. & Neil, Martin & Fenton, Norman E., 2024. "A hybrid Bayesian network for medical device risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Gangwal, Utkarsh & Dong, Shangjia, 2022. "Critical facility accessibility rapid failure early-warning detection and redundancy mapping in urban flooding," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    15. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    16. Shang, Qingxue & Guo, Xiaodong & Li, Jichao & Wang, Tao, 2022. "Post-earthquake health care service accessibility assessment framework and its application in a medium-sized city," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Fu, Lipeng & Wang, Xueqing & Zhao, Heng & Li, Mengnan, 2022. "Interactions among safety risks in metro deep foundation pit projects: An association rule mining-based modeling framework," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    18. Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.
    19. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    20. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:224:y:2022:i:c:s0951832022001818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.