IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v249y2024ics095183202400320x.html
   My bibliography  Save this article

A mission success probability assessment framework for phased-mission-systems using extended graphical evaluation and review technique

Author

Listed:
  • Zhang, Jingru
  • Fang, Zhigeng
  • Dong, Wenjie
  • Liu, Sifeng
  • Chen, Ding

Abstract

Mission success probability (MSP) characterizes the capability of successfully completing the desired mission under external disruptions and internal failures, which is of great significance in assessing the availability of phased-mission-system (PMS). Therefore, in order to precisely resolve the MSP and analyze the PMS, a novel mission-driven four-level modular framework is established. Firstly, by dissecting and outlining missions from top to bottom, mission analysis implements multi-granularity analysis from abstract to concrete. The overall objective, sub-tasks, phased tasks, supported component and its configuration are all identified. Secondly, the general MSP assessment procedure is elaborated from the perspectives of operation level, phase level and mission level. Under the provided extended graphical evaluation and review technique (EGERT), the metrics of PMS are deduced from a single activity’s metrics while considering the cascading effect and time factor. Finally, the presented model is employed to illustrate how the MSP evaluation is carried out in a regional air defensive system of systems.

Suggested Citation

  • Zhang, Jingru & Fang, Zhigeng & Dong, Wenjie & Liu, Sifeng & Chen, Ding, 2024. "A mission success probability assessment framework for phased-mission-systems using extended graphical evaluation and review technique," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:reensy:v:249:y:2024:i:c:s095183202400320x
    DOI: 10.1016/j.ress.2024.110248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400320X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:249:y:2024:i:c:s095183202400320x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.