IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v199y2020ics0951832019309706.html
   My bibliography  Save this article

Reliability assessment of multi-state phased mission systems with common bus performance sharing considering transmission loss and performance storage

Author

Listed:
  • Cheng, Chen
  • Yang, Jun
  • Li, Lei

Abstract

Multi-state phased mission systems (MS-PMSs) with common bus performance sharing widely exist in practical engineering, such as intelligent transmission systems and power supply systems. The challenges in assessing the reliability of these systems come from the dependence among phases and the complexity of multi-state behaviors of components. Besides, the performance transfer between different phases and the performance transfer with transmission loss have never been studied in such systems. To effectively address these problems, this paper proposes a reliability model for MS-PMSs with common bus performance sharing considering transmission loss and performance storage. First, a novel Markov model for multi-state components is established to solve the dependence problem among phases. Then, considering the performance sharing among subsystems within each phase through the common bus and the performance transferring between phases by an energy storage device, an iteration method combined with transmission loss function is adopted to establish the system reliability model, where the performance transmission loss is proportional to transmission distance and transmission performance. Furthermore, a universal generating function (UGF) based method is used for evaluating the system reliability. Finally, an analytical example and a case study of the IEEE-24 bus system are utilized to verify the availability of the proposed method.

Suggested Citation

  • Cheng, Chen & Yang, Jun & Li, Lei, 2020. "Reliability assessment of multi-state phased mission systems with common bus performance sharing considering transmission loss and performance storage," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019309706
    DOI: 10.1016/j.ress.2020.106917
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019309706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Rui & Zhai, Qingqing & Xing, Liudong & Yang, Jun, 2014. "Reliability of demand-based phased-mission systems subject to fault level coverage," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 18-25.
    2. Jia, Heping & Ding, Yi & Peng, Rui & Liu, Hanlin & Song, Yonghua, 2020. "Reliability assessment and activation sequence optimization of non-repairable multi-state generation systems considering warm standby," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    3. Wu, Di & Chi, Yuanying & Peng, Rui & Sun, Mengyao, 2019. "Reliability of capacitated systems with performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 335-344.
    4. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    5. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2017. "Redundancy optimization for series-parallel phased mission systems exposed to random shocks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 554-560.
    6. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng, 2018. "Reliability analysis of phased mission system with non-exponential and partially repairable components," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 119-127.
    7. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Cai, Kui, 2018. "A multi-state shock model with mutative failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 1-11.
    8. Xing, Liudong & Levitin, Gregory, 2013. "BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 145-153.
    9. Qiu, Siqi & Ming, Henry X.G., 2019. "Reliability evaluation of multi-state series-parallel systems with common bus performance sharing considering transmission loss," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 406-415.
    10. Lisnianski, Anatoly & Ding, Yi, 2009. "Redundancy analysis for repairable multi-state system by using combined stochastic processes methods and universal generating function technique," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1788-1795.
    11. Gregory Levitin, 2011. "Reliability of multi-state systems with common bus performance sharing," IISE Transactions, Taylor & Francis Journals, vol. 43(7), pages 518-524.
    12. Ye, Zhi-Sheng & Peng, Rui & Wang, Wenbin, 2017. "Defense and attack of performance-sharing common bus systemsAuthor-Name: Zhai, Qingqing," European Journal of Operational Research, Elsevier, vol. 256(3), pages 962-975.
    13. Wang, Guanjun & Peng, Rui & Xing, Liudong, 2018. "Reliability evaluation of unrepairable k-out-of-n: G systems with phased-mission requirements based on record values," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 191-197.
    14. Rui Peng & Qingqinq Zhai & Liudong Xing & Jun Yang, 2016. "Reliability analysis and optimal structure of series-parallel phased-mission systems subject to fault-level coverage," IISE Transactions, Taylor & Francis Journals, vol. 48(8), pages 736-746, August.
    15. Wang, Guanjun & Duan, Fengjun & Zhou, Yifan, 2018. "Reliability evaluation of multi-state series systems with performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 58-63.
    16. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    17. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Li, Xiang-Yu & Li, Yan-Feng & Huang, Hong-Zhong & Zio, Enrico, 2018. "Reliability assessment of phased-mission systems under random shocks," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 352-361.
    19. Yu, Huan & Yang, Jun & Mo, Huadong, 2014. "Reliability analysis of repairable multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 90-96.
    20. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, February.
    21. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Fan, Yu, 2020. "Multi-state balanced systems in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    22. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2015. "Probabilistic common cause failures in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 53-60.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Chen & Yang, Jun & Li, Lei, 2021. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state phased mission system with common bus performance sharing subjected to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Hui Xiao & Minhao Cao & Gang Kou & Xiaojun Yuan, 2021. "Optimal element allocation and sequencing of multi-state series systems with two levels of performance sharing," Journal of Risk and Reliability, , vol. 235(2), pages 282-292, April.
    3. Su, Peng & Wang, Guanjun & Duan, Fengjun, 2020. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Wu, Congshan & Zhao, Xian & Wang, Xiaoyue & Wang, Siqi, 2021. "Reliability analysis of performance-based balanced systems with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Azhdari, Armaghan & Ardakan, Mostafa Abouei, 2022. "Reliability optimization of multi-state networks in a star configuration with bi-level performance sharing mechanism and transmission losses," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Jia, Heping & Liu, Dunnan & Li, Yanbin & Ding, Yi & Liu, Mingguang & Peng, Rui, 2020. "Reliability evaluation of power systems with multi-state warm standby and multi-state performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    7. Xiao, Hui & Zhang, Yiyun & Xiang, Yisha & Peng, Rui, 2020. "Optimal design of a linear sliding window system with consideration of performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    8. Gu, Liudong & Wang, Guanjun & Zhou, Yifan, 2024. "Optimal allocation of multi-state performance sharing systems with multiple common buses," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    9. Wu, Di & Chi, Yuanying & Peng, Rui & Sun, Mengyao, 2019. "Reliability of capacitated systems with performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 335-344.
    10. Ma, Ye & Chi, Yuanying & Wu, Di & Peng, Rui & Wu, Shaomin, 2021. "Reliability of integrated electricity and gas supply system with performance substitution and sharing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    11. Tian, Tianzi & Yang, Jun & Li, Lei & Wang, Ning, 2023. "Reliability assessment of performance-based balanced systems with rebalancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    12. Wang, Guanjun & Duan, Fengjun & Zhou, Yifan, 2018. "Reliability evaluation of multi-state series systems with performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 58-63.
    13. Levitin, Gregory & Xing, Liudong & Huang, Hong Zhong, 2019. "Dynamic availability and performance deficiency of common bus systems with imperfectly repairable components," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 58-66.
    14. Gu, Liudong & Wang, Guanjun & Zhou, Yifan & Peng, Rui, 2024. "Reliability optimization of multi-state systems with two performance sharing groups," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Azhdari, Armaghan & Ardakan, Mostafa Abouei & Najafi, Mojtaba, 2023. "An approach for reliability optimization of a multi-state centralized network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    16. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    17. Zhao, Xian & Han, He & Jiao, Chunhui & Qiu, Qingan, 2024. "Reliability modeling of k-out-of-n: F balanced systems with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    18. Cao, Minhao & Guo, Jianjun & Xiao, Hui & Wu, Liang, 2022. "Reliability analysis and optimal generator allocation and protection strategy of a non-repairable power grid system," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    19. Qiu, Siqi & Ming, Henry X.G., 2019. "Reliability evaluation of multi-state series-parallel systems with common bus performance sharing considering transmission loss," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 406-415.
    20. Yan, Xiangbin & Qiu, Hui & Peng, Rui & Wu, Shaomin, 2020. "Optimal configuration of a power grid system with a dynamic performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019309706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.