IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v193y2020ics0951832019300493.html
   My bibliography  Save this article

Efficient reliability analysis of dynamic k-out-of-n heterogeneous phased-mission systems

Author

Listed:
  • Wang, Chaonan
  • Xing, Liudong
  • Amari, Suprasad V.
  • Tang, Bo

Abstract

In this paper, an efficient analytical modeling method is proposed for reliability analysis of k-out-of-n phased-mission systems (PMSs). A PMS is a system involving multiple, consecutive and non-overlapping phases of tasks during its mission, which abounds in complex technological systems such as aerospace systems, nuclear power plants, and high-performance computing systems. Due to dynamics in the system configuration and component behavior as well as statistical dependences across phases, exact reliability evaluation of a PMS is a time-consuming and complicated task. This paper proposes a new efficient multi-valued decision diagram (MDD) based method for the reliability analysis of a special class of non-repairable PMSs called k-out-of-n PMS where the same number of components n is involved in all the phases but the required number of working components k may vary from phase to phase. Particularly, a new MDD generation method is proposed for a fast construction of the PMS MDD model. The system components are not necessarily identical; they can be heterogeneous in their failure time distributions. Examples are provided to demonstrate the application and advantages of the proposed methodology.

Suggested Citation

  • Wang, Chaonan & Xing, Liudong & Amari, Suprasad V. & Tang, Bo, 2020. "Efficient reliability analysis of dynamic k-out-of-n heterogeneous phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832019300493
    DOI: 10.1016/j.ress.2019.106586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019300493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chaonan & Xing, Liudong & Peng, Rui & Pan, Zhusheng, 2017. "Competing failure analysis in phased-mission systems with multiple functional dependence groups," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 24-33.
    2. Wang, Yujie & Xing, Liudong & Levitin, Gregory & Huang, Ning, 2018. "Probabilistic competing failure analysis in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 37-51.
    3. Peng, Rui & Zhai, Qingqing & Xing, Liudong & Yang, Jun, 2014. "Reliability of demand-based phased-mission systems subject to fault level coverage," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 18-25.
    4. Suprasad V. Amari & Chaonan Wang & Liudong Xing & Rahamat Mohammad, 2018. "An efficient phased-mission reliability model considering dynamic k-out-of-n subsystem redundancy," IISE Transactions, Taylor & Francis Journals, vol. 50(10), pages 868-877, October.
    5. Mo, Yuchang & Xing, Liudong & Amari, Suprasad V. & Bechta Dugan, Joanne, 2015. "Efficient analysis of multi-state k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 95-105.
    6. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng, 2018. "Reliability analysis of phased mission system with non-exponential and partially repairable components," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 119-127.
    7. Zhigang Tian & Ming Zuo & Richard Yam, 2009. "Multi-state systems and their performance evaluation," IISE Transactions, Taylor & Francis Journals, vol. 41(1), pages 32-44.
    8. Wang, Guanjun & Peng, Rui & Xing, Liudong, 2018. "Reliability evaluation of unrepairable k-out-of-n: G systems with phased-mission requirements based on record values," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 191-197.
    9. Rui Peng & Qingqinq Zhai & Liudong Xing & Jun Yang, 2016. "Reliability analysis and optimal structure of series-parallel phased-mission systems subject to fault-level coverage," IISE Transactions, Taylor & Francis Journals, vol. 48(8), pages 736-746, August.
    10. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2014. "Explicit and implicit methods for probabilistic common-cause failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 175-184.
    11. Li, Xiang-Yu & Li, Yan-Feng & Huang, Hong-Zhong & Zio, Enrico, 2018. "Reliability assessment of phased-mission systems under random shocks," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 352-361.
    12. Wu, Xin-yang & Wu, Xiao-Yue, 2015. "Extended object-oriented Petri net model for mission reliability simulation of repairable PMS with common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 109-119.
    13. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2015. "Probabilistic common cause failures in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 53-60.
    14. Xing, Liudong & Amari, Suprasad V. & Wang, Chaonan, 2012. "Reliability of k-out-of-n systems with phased-mission requirements and imperfect fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 45-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahid Baradaran & Amir Hossein Hosseinian, 2020. "A bi-objective model for redundancy allocation problem in designing server farms: mathematical formulation and solution approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(5), pages 935-952, October.
    2. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    3. Alkaff, Abdullah, 2021. "Discrete time dynamic reliability modeling for systems with multistate components," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    4. Xiao, Hui & Yi, Kunxiang & Liu, Haitao & Kou, Gang, 2021. "Reliability modeling and optimization of a two-dimensional sliding window system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Wang, Chaonan & Xing, Liudong & Yu, Jingui & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2023. "Phase reduction for efficient reliability analysis of dynamic k-out-of-n phased mission systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Wang, Chaonan & Xing, Liudong & Su, Yujie & Guan, Quanlong & Tang, Bo & Hu, Yuliang, 2023. "Reliability analysis of dynamic voting phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Che, Haiyang, 2021. "A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Xu, Dong & Tian, Yubin & Shi, Junbiao & Wang, Dianpeng & Zhang, Ming & Li, Haijin, 2023. "Reliability analysis and optimal redundancy for a satellite power supply system based on a new dynamic k-out-of-n: G model," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    9. Oszczypała, Mateusz & Konwerski, Jakub & Ziółkowski, Jarosław & Małachowski, Jerzy, 2024. "Reliability analysis and redundancy optimization of k-out-of-n systems with random variable k using continuous time Markov chain and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Wang, Xiaolin & Xu, Jihui & Zhang, Lei & Wang, Ning, 2023. "Mission success probability optimizing of phased mission system balancing the phase backup and system risk: A novel GERT mechanism," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    11. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    12. Xiao, Hui & Lin, Chen & Kou, Gang & Peng, Rui, 2022. "Reliability modeling and configuration optimization of a photovoltaic based electric power generation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    13. Wang, Chaonan & Wang, Shuli & Xing, Liudong & Guan, Quanlong, 2023. "Efficient performability analysis of dynamic multi-state k-out-of-n: G systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Chen & Yang, Jun & Li, Lei, 2021. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state phased mission system with common bus performance sharing subjected to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Wang, Chaonan & Xing, Liudong & Su, Yujie & Guan, Quanlong & Tang, Bo & Hu, Yuliang, 2023. "Reliability analysis of dynamic voting phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Yu, Haiyue & Wu, Xinyang & Wu, Xiaoyue, 2020. "An extended object-oriented petri net model for mission reliability evaluation of phased-mission system with time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Wang, Chaonan & Xing, Liudong & Yu, Jingui & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2023. "Phase reduction for efficient reliability analysis of dynamic k-out-of-n phased mission systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Cheng, Chen & Yang, Jun & Li, Lei, 2020. "Reliability assessment of multi-state phased mission systems with common bus performance sharing considering transmission loss and performance storage," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    6. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Che, Haiyang, 2021. "A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Zhang, Jingru & Fang, Zhigeng & Dong, Wenjie & Liu, Sifeng & Chen, Ding, 2024. "A mission success probability assessment framework for phased-mission-systems using extended graphical evaluation and review technique," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    9. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2017. "Redundancy optimization for series-parallel phased mission systems exposed to random shocks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 554-560.
    10. Zhai, Qingqing & Xing, Liudong & Peng, Rui & Yang, Jun, 2018. "Aggregated combinatorial reliability model for non-repairable parallel phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 242-250.
    11. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang & Guo, Peng & Zhu, Wenjin, 2020. "Mission success probability optimization for phased-mission systems with repairable component modules," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Wang, Guanjun & Peng, Rui & Xing, Liudong, 2018. "Reliability evaluation of unrepairable k-out-of-n: G systems with phased-mission requirements based on record values," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 191-197.
    13. Hui Xiao & Kunxiang Yi & Gang Kou & Liudong Xing, 2020. "Reliability of a two‐dimensional demand‐based networked system with multistate components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 453-468, September.
    14. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    15. Levitin, Gregory & Finkelstein, Maxim, 2018. "Optimal mission abort policy for systems in a random environment with variable shock rate," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 11-17.
    16. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal mission abort policy with multiple shock number thresholds," Journal of Risk and Reliability, , vol. 232(6), pages 607-615, December.
    17. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal aborting rule in multi-attempt missions performed by multicomponent systems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 244-252.
    18. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal abort rules and subtask distribution in missions performed by multiple independent heterogeneous units," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    19. Li, Xiang-Yu & Li, Xiaopeng & Feng, Jianxiang & Li, Congming & Xiong, Xiaoyan & Huang, Hong-Zhong, 2023. "Reliability analysis and optimization of multi-phased spaceflight with backup missions and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Levitin, Gregory & Xing, Liudong & Luo, Liang, 2019. "Influence of failure propagation on mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 29-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832019300493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.