Probabilistic risk assessment of civil aircraft associated failures under condition-based maintenance
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2024.110550
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lee, Juseong & Mitici, Mihaela, 2020. "An integrated assessment of safety and efficiency of aircraft maintenance strategies using agent-based modelling and stochastic Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Zheng, Rui & Chen, Bingkun & Gu, Liudong, 2020. "Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Tsagkas, Vassilis & Nathanael, Dimitris & Marmaras, Nicolas, 2014. "A pragmatic mapping of factors behind deviating acts in aircraft maintenance," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 106-114.
- Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Hesabi, Hadis & Nourelfath, Mustapha & Hajji, Adnène, 2022. "A deep learning predictive model for selective maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Zhang, Qin & Liu, Yu & Xiahou, Tangfan & Huang, Hong-Zhong, 2023. "A heuristic maintenance scheduling framework for a military aircraft fleet under limited maintenance capacities," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Lee, Juseong & Mitici, Mihaela, 2022. "Multi-objective design of aircraft maintenance using Gaussian process learning and adaptive sampling," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- de Pater, Ingeborg & Reijns, Arthur & Mitici, Mihaela, 2022. "Alarm-based predictive maintenance scheduling for aircraft engines with imperfect Remaining Useful Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Cha, Guesik & Park, Junseok & Moon, Ilkyeong, 2023. "Military aircraft flight and maintenance planning model considering heterogeneous maintenance tasks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
- Yang, Hongbing & Li, Wenchao & Wang, Bin, 2021. "Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Sheng, Jingyu & Prescott, Darren, 2019. "A coloured Petri net framework for modelling aircraft fleet maintenance," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 67-88.
- Andriotis, C.P. & Papakonstantinou, K.G., 2021. "Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Cheng, Jianda & Cheng, Minghui & Liu, Yan & Wu, Jun & Li, Wei & Frangopol, Dan M., 2024. "Knowledge transfer for adaptive maintenance policy optimization in engineering fleets based on meta-reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
- Azar, Kamyar & Hajiakhondi-Meybodi, Zohreh & Naderkhani, Farnoosh, 2022. "Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Pedro Nunes & Eugénio Rocha & José Santos, 2024. "Adaptive Framework for Maintenance Scheduling Based on Dynamic Preventive Intervals and Remaining Useful Life Estimation," Future Internet, MDPI, vol. 16(6), pages 1-17, June.
- Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Kim, Seokgoo & Choi, Joo-Ho & Kim, Nam Ho, 2022. "Inspection schedule for prognostics with uncertainty management," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Xu, Gaowei & Azhari, Fae, 2022. "Data-driven optimization of repair schemes and inspection intervals for highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
- Anwar, Ghazanfar Ali & Zhang, Xiaoge, 2024. "Deep reinforcement learning for intelligent risk optimization of buildings under hazard," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
- Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Mikhail, Mina & Ouali, Mohamed-Salah & Yacout, Soumaya, 2024. "A data-driven methodology with a nonparametric reliability method for optimal condition-based maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Hendradewa, Andrie Pasca & Yin, Shen, 2025. "Comparative analysis of offshore wind turbine blade maintenance: RL-based and classical strategies for sustainable approach," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Oakley, Jordan L. & Wilson, Kevin J. & Philipson, Pete, 2022. "A condition-based maintenance policy for continuously monitored multi-component systems with economic and stochastic dependence," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Pliego Marugán, Alberto & Pinar-Pérez, Jesús M. & GarcÃa Márquez, Fausto Pedro, 2024. "A reinforcement learning agent for maintenance of deteriorating systems with increasingly imperfect repairs," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Kamariotis, Antonios & Tatsis, Konstantinos & Chatzi, Eleni & Goebel, Kai & Straub, Daniel, 2024. "A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Lee, Dongkyu & Song, Junho, 2023. "Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Duan, Chaoqun & Gong, Ting & Yan, Liangwen & Li, Xinmin, 2024. "Bi-level corrected residual life-based maintenance for deteriorating systems under competing risks," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
- Ferreira Neto, Waldomiro Alves & VirgÃnio Cavalcante, Cristiano Alexandre & Do, Phuc, 2024. "Deep reinforcement learning for maintenance optimization of a scrap-based steel production line," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- He, Yonghuan & Ma, Hoi-Lam & Park, Woo-Yong & Liu, Shi Qiang & Chung, Sai-Ho, 2023. "Maximizing robustness of aircraft routing with heterogeneous maintenance tasks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
- Ye, Zhenggeng & Cai, Zhiqiang & Yang, Hui & Si, Shubin & Zhou, Fuli, 2023. "Joint optimization of maintenance and quality inspection for manufacturing networks based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
More about this item
Keywords
Civil aircraft; Risk assessment; Associated failure; Condition-based maintenance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006227. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.