IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v249y2024ics0951832024002722.html
   My bibliography  Save this article

Deep reinforcement learning for maintenance optimization of a scrap-based steel production line

Author

Listed:
  • Ferreira Neto, Waldomiro Alves
  • Virgínio Cavalcante, Cristiano Alexandre
  • Do, Phuc

Abstract

This paper presents a Deep Reinforcement Learning (DRL)-based optimization approach for determining the optimal inspection and maintenance planning of a scrap-based steel production line. The DRL-based optimization maintenance recommends the adequate time for inspections and maintenance activities based on the monitoring conditions of the production line, such as machine productivity, buffer level, and production demand. Some practical aspects of the system, such as such uncertainty of the maintenance duration and the variable production rate of the machines, were considered. A scrap-based steel production line was modeled as a multi-component system considering components dependencies. A simulation model was developed to simulate the dynamics of the system and assist with the development of the DRL maintenance approach. The proposed DRL-based maintenance is compared with traditional maintenance policies, such reactive maintenance, time-based maintenance, and condition-based maintenance. In addition, different DRL algorithms such as PPO (Proximal Policy Optimization), TRPO (Trust Region Policy Optimization), and DQN (Deep Q-Network) are investigated in the case-based scenario. The findings indicated the potential for significant financial savings. Therefore, the proposed maintenance approach demonstrates system adaptability and has the potential to be a powerful tool for industrial competitiveness.

Suggested Citation

  • Ferreira Neto, Waldomiro Alves & Virgínio Cavalcante, Cristiano Alexandre & Do, Phuc, 2024. "Deep reinforcement learning for maintenance optimization of a scrap-based steel production line," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024002722
    DOI: 10.1016/j.ress.2024.110199
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024002722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.