IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v247y2024ics0951832024001923.html
   My bibliography  Save this article

Deep reinforcement learning for intelligent risk optimization of buildings under hazard

Author

Listed:
  • Anwar, Ghazanfar Ali
  • Zhang, Xiaoge

Abstract

Risk management often involves retrofit optimization to enhance the performance of buildings against extreme events but may result in huge upfront mitigation costs. Existing stochastic optimization frameworks could be computationally expensive, may require explicit programming, and are often not intelligent. Hence, an intelligent risk optimization framework is proposed herein for building structures by developing a deep reinforcement learning-enabled actor-critic neural network model. The proposed framework is divided into two parts including (1) a performance-based environment to assess mitigation costs and uncertain future consequences under hazards and (2) a deep reinforcement learning-enabled risk optimization model for performance enhancement. The performance-based environment takes mitigation alternatives as input and provides consequences and retrofit costs as output by utilizing several steps, including hazard assessment, damage assessment, and consequence assessment. The risk optimization is performed by integrating performance-based environment with actor-critic deep neural networks to simultaneously reduce retrofit costs and uncertain future consequences given seismic hazards. For illustration, the proposed framework is implemented on a portfolio with numerous building structures to demonstrate the new paradigm for intelligent risk optimization. Also, the performance of the proposed method is compared with genetic optimization, deep Q-networks, and proximal policy optimization.

Suggested Citation

  • Anwar, Ghazanfar Ali & Zhang, Xiaoge, 2024. "Deep reinforcement learning for intelligent risk optimization of buildings under hazard," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024001923
    DOI: 10.1016/j.ress.2024.110118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Najafi, Seyedvahid & Lee, Chi-Guhn, 2023. "A deep reinforcement learning approach for repair-based maintenance of multi-unit systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Lin, Penghui & Zhang, Limao & Tiong, Robert L.K., 2023. "Multi-objective robust optimization for enhanced safety in large-diameter tunnel construction with interactive and explainable AI," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    4. Wu, Jason & Baker, Jack W., 2020. "Statistical learning techniques for the estimation of lifeline network performance and retrofit selection," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    5. Ghazanfar Ali Anwar & Mudasir Hussain & Muhammad Zeshan Akber & Mustesin Ali Khan & Aatif Ali Khan, 2023. "Sustainability-Oriented Optimization and Decision Making of Community Buildings under Seismic Hazard," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    6. Lee, Jun S. & Yeo, In-Ho & Bae, Younghoon, 2024. "A stochastic track maintenance scheduling model based on deep reinforcement learning approaches," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Luca Pinciroli & Piero Baraldi & Guido Ballabio & Michele Compare & Enrico Zio, 2021. "Deep Reinforcement Learning Based on Proximal Policy Optimization for the Maintenance of a Wind Farm with Multiple Crews," Energies, MDPI, vol. 14(20), pages 1-17, October.
    8. Yang, Sen & Zhang, Yi & Lu, Xinzheng & Guo, Wei & Miao, Huiquan, 2024. "Multi-agent deep reinforcement learning based decision support model for resilient community post-hazard recovery," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Martha-Liliana Carreño & Omar Cardona & Alex Barbat, 2007. "Urban Seismic Risk Evaluation: A Holistic Approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 137-172, January.
    10. Alisjahbana, Irene & Graur, Andrei & Lo, Irene & Kiremidjian, Anne, 2022. "Optimizing strategies for post-disaster reconstruction of school systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Yang, David Y. & Frangopol, Dan M., 2019. "Life-cycle management of deteriorating civil infrastructure considering resilience to lifetime hazards: A general approach based on renewal-reward processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 197-212.
    12. Ruiling Sun & Ge Gao & Zaiwu Gong & Jie Wu, 2020. "A review of risk analysis methods for natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 571-593, January.
    13. Dehghani, Nariman L. & Jeddi, Ashkan B. & Shafieezadeh, Abdollah, 2021. "Intelligent hurricane resilience enhancement of power distribution systems via deep reinforcement learning," Applied Energy, Elsevier, vol. 285(C).
    14. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    16. Moslehi, Salim & Reddy, T. Agami, 2018. "Sustainability of integrated energy systems: A performance-based resilience assessment methodology," Applied Energy, Elsevier, vol. 228(C), pages 487-498.
    17. Andriotis, C.P. & Papakonstantinou, K.G., 2019. "Managing engineering systems with large state and action spaces through deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Du, Ao & Wang, Xiaowei & Xie, Yazhou & Dong, You, 2023. "Regional seismic risk and resilience assessment: Methodological development, applicability, and future research needs – An earthquake engineering perspective," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    19. Å arÅ«nienÄ—, Inga & MartiÅ¡auskas, Linas & KrikÅ¡tolaitis, RiÄ ardas & Augutis, Juozas & Setola, Roberto, 2024. "Risk assessment of critical infrastructures: A methodology based on criticality of infrastructure elements," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Andriotis, C.P. & Papakonstantinou, K.G., 2021. "Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Lee, Dongkyu & Song, Junho, 2023. "Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Yang, Sen & Zhang, Yi & Lu, Xinzheng & Guo, Wei & Miao, Huiquan, 2024. "Multi-agent deep reinforcement learning based decision support model for resilient community post-hazard recovery," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Cheng, Jianda & Cheng, Minghui & Liu, Yan & Wu, Jun & Li, Wei & Frangopol, Dan M., 2024. "Knowledge transfer for adaptive maintenance policy optimization in engineering fleets based on meta-reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    6. Najafi, Seyedvahid & Lee, Chi-Guhn, 2023. "A deep reinforcement learning approach for repair-based maintenance of multi-unit systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Arcieri, Giacomo & Hoelzl, Cyprien & Schwery, Oliver & Straub, Daniel & Papakonstantinou, Konstantinos G. & Chatzi, Eleni, 2023. "Bridging POMDPs and Bayesian decision making for robust maintenance planning under model uncertainty: An application to railway systems," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    9. Nguyen, Van-Thai & Do, Phuc & Vosin, Alexandre & Iung, Benoit, 2022. "Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    11. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    12. Mikhail, Mina & Ouali, Mohamed-Salah & Yacout, Soumaya, 2024. "A data-driven methodology with a nonparametric reliability method for optimal condition-based maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Du, Ao & Wang, Xiaowei & Xie, Yazhou & Dong, You, 2023. "Regional seismic risk and resilience assessment: Methodological development, applicability, and future research needs – An earthquake engineering perspective," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    15. Youba Nait Belaid & Patrick Coudray & José Sanchez-Torres & Yi-Ping Fang & Zhiguo Zeng & Anne Barros, 2021. "Resilience Quantification of Smart Distribution Networks—A Bird’s Eye View Perspective," Energies, MDPI, vol. 14(10), pages 1-29, May.
    16. Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Xu, Min & Li, Guoyuan & Chen, Anthony, 2024. "Resilience-driven post-disaster restoration of interdependent infrastructure systems under different decision-making environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    18. Ye, Zhenggeng & Cai, Zhiqiang & Yang, Hui & Si, Shubin & Zhou, Fuli, 2023. "Joint optimization of maintenance and quality inspection for manufacturing networks based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    19. Andriotis, C.P. & Papakonstantinou, K.G., 2021. "Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    20. Hamida, Zachary & Goulet, James-A., 2023. "Hierarchical reinforcement learning for transportation infrastructure maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024001923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.