IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v222y2022ics0951832022000783.html
   My bibliography  Save this article

Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study

Author

Listed:
  • Azar, Kamyar
  • Hajiakhondi-Meybodi, Zohreh
  • Naderkhani, Farnoosh

Abstract

Recent increased enthusiasm towards Industrial Artificial Intelligence (IAI) coupled with advancements in smart sensor technologies have resulted in simultaneous incorporation of several Condition Monitoring (CM) technologies within manufacturing/industrial sectors. Smart utilization of CM data leads to enhanced safety, reliability and availability of manufacturing systems. Conventional system monitoring techniques, however, cannot efficiently cope with such rich CM information content. In this regard, the paper proposes a novel hybrid Maintenance Decision Support System (MDSS) for fault diagnostic and prognostics considering event-triggered CM data. The proposed MDSS is a hybrid framework designed by coupling Machine Learning (ML)-based models and statistical techniques. More specifically, the MDSS is a time-dependent Proportional Hazard Model (PHM) augmented with semi-supervised ML approaches and Reinforcement Learning (RL) to find an optimal maintenance policy for systems subject to stochastic degradations with focus on cost minimization. The developed hybrid model is capable of inferring and fusing high-volume CM data sources in an adaptive and autonomous fashion to recommend optimal maintenance decisions without human intervention, which is a step-forward contribution in the maintenance context. To evaluate the structure and performance of the proposed model, comprehensive ML-based solutions are developed based on a dataset provided by NASA containing run-to-failure and CM data associated with aircraft engines.

Suggested Citation

  • Azar, Kamyar & Hajiakhondi-Meybodi, Zohreh & Naderkhani, Farnoosh, 2022. "Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:reensy:v:222:y:2022:i:c:s0951832022000783
    DOI: 10.1016/j.ress.2022.108405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022000783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Zhigang & Jin, Tongdan & Wu, Bairong & Ding, Fangfang, 2011. "Condition based maintenance optimization for wind power generation systems under continuous monitoring," Renewable Energy, Elsevier, vol. 36(5), pages 1502-1509.
    2. Listou Ellefsen, André & Bjørlykhaug, Emil & Æsøy, Vilmar & Ushakov, Sergey & Zhang, Houxiang, 2019. "Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 240-251.
    3. Tang, Diyin & Makis, Viliam & Jafari, Leila & Yu, Jinsong, 2015. "Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 198-207.
    4. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    5. Li, Xiang & Zhang, Wei & Ding, Qian, 2019. "Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 208-218.
    6. Xiang Wu & Sarah Ryan, 2010. "Value of condition monitoring for optimal replacement in the proportional hazards model with continuous degradation," IISE Transactions, Taylor & Francis Journals, vol. 42(8), pages 553-563.
    7. Yang, Hongbing & Li, Wenchao & Wang, Bin, 2021. "Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    8. Zheng, Rui & Chen, Bingkun & Gu, Liudong, 2020. "Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Leila Jafari & Farnoosh Naderkhani & Viliam Makis, 2018. "Joint optimization of maintenance policy and inspection interval for a multi-unit series system using proportional hazards model," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(1), pages 36-48, January.
    10. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    11. Yu, Wennian & Kim, II Yong & Mechefske, Chris, 2020. "An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    12. Zhou, P. & Yin, P.T., 2019. "An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 1-9.
    13. Shi, Zunya & Chehade, Abdallah, 2021. "A dual-LSTM framework combining change point detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    15. Duan, Chaoqun & Makis, Viliam & Deng, Chao, 2020. "A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    16. Rocchetta, R. & Bellani, L. & Compare, M. & Zio, E. & Patelli, E., 2019. "A reinforcement learning framework for optimal operation and maintenance of power grids," Applied Energy, Elsevier, vol. 241(C), pages 291-301.
    17. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    18. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    19. Andriotis, C.P. & Papakonstantinou, K.G., 2021. "Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yadong & Yan, Xiaoan & Feng, Ke & Sheng, Xin & Sun, Beibei & Liu, Zheng, 2022. "Attention-based multiscale denoising residual convolutional neural networks for fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Leoni, Leonardo & De Carlo, Filippo & Abaei, Mohammad Mahdi & BahooToroody, Ahmad & Tucci, Mario, 2023. "Failure diagnosis of a compressor subjected to surge events: A data-driven framework," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    3. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    4. Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Sánchez, Luciano & Costa, Nahuel & Couso, Inés, 2023. "Simplified models of remaining useful life based on stochastic orderings," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Tan, Hongchuang & Xie, Suchao & Ma, Wen & Yang, Chengxing & Zheng, Shiwei, 2023. "Correlation feature distribution matching for fault diagnosis of machines," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Jiang, Shengyu & He, Rui & Chen, Guoming & Zhu, Yuan & Shi, Jiaming & Liu, Kang & Chang, Yuanjiang, 2023. "Semi-supervised health assessment of pipeline systems based on optical fiber monitoring," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Li, Xin & Li, Yong & Yan, Ke & Shao, Haidong & (Jing) Lin, Janet, 2023. "Intelligent fault diagnosis of bevel gearboxes using semi-supervised probability support matrix machine and infrared imaging," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Qiu, Hailing & Tseng, Shuan Wei & Zhang, Xuan & Huang, Caiyan & Wu, Kuo-Jui, 2024. "Revealing the compound interrelationships toward sustainable transition in semiconductor supply chain: A sensitivity analysis," International Journal of Production Economics, Elsevier, vol. 271(C).
    11. Zhang, Yongchao & Ji, J.C. & Ren, Zhaohui & Ni, Qing & Gu, Fengshou & Feng, Ke & Yu, Kun & Ge, Jian & Lei, Zihao & Liu, Zheng, 2023. "Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Xu, Gaowei & Azhari, Fae, 2022. "Data-driven optimization of repair schemes and inspection intervals for highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Najafi, Seyedvahid & Lee, Chi-Guhn, 2023. "A deep reinforcement learning approach for repair-based maintenance of multi-unit systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Arias Chao, Manuel & Kulkarni, Chetan & Goebel, Kai & Fink, Olga, 2022. "Fusing physics-based and deep learning models for prognostics," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Bae, Jinwoo & Xi, Zhimin, 2022. "Learning of physical health timestep using the LSTM network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    12. Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Mikhail, Mina & Ouali, Mohamed-Salah & Yacout, Soumaya, 2024. "A data-driven methodology with a nonparametric reliability method for optimal condition-based maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    16. Theissler, Andreas & Pérez-Velázquez, Judith & Kettelgerdes, Marcel & Elger, Gordon, 2021. "Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    17. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    18. He, Yuxuan & Su, Huai & Zio, Enrico & Peng, Shiliang & Fan, Lin & Yang, Zhaoming & Yang, Zhe & Zhang, Jinjun, 2023. "A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Ma, Zhonghai & Liao, Haitao & Gao, Jianhang & Nie, Songlin & Geng, Yugang, 2023. "Physics-Informed Machine Learning for Degradation Modeling of an Electro-Hydrostatic Actuator System," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Nguyen, Van-Thai & Do, Phuc & Vosin, Alexandre & Iung, Benoit, 2022. "Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:222:y:2022:i:c:s0951832022000783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.