IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v228y2022ics0951832022004021.html
   My bibliography  Save this article

Data-driven optimization of repair schemes and inspection intervals for highway bridges

Author

Listed:
  • Xu, Gaowei
  • Azhari, Fae

Abstract

Routine bridge inspections enable timely maintenance plans based on potential risks. These inspections are performed at fixed time intervals, which may be unnecessarily short for bridges in excellent conditions and precariously long for those in poor conditions. Also, deterioration models used in current bridge management approaches fail to include the effect of age, causing inaccurate predictions. This paper develops a hazard-based bridge management approach where inspection frequencies and repair suggestions are optimized based on hazard levels. A two-dimensional Markov model describes the age-dependent bridge deterioration, and a semi-Markov decision process optimizes inspection intervals and repair decisions. The objective is to minimize the expected long-term total annual costs, including expenses associated with maintenance and traffic detours. The modeling process and maintenance management framework was demonstrated on an example bridge superstructure in New York. The results showed lower annual and total costs than the conventional management method. As expected, sensitivity analyses indicated that the pre-specified choices of inspection intervals for low and high hazard levels have a significant effect on the calculated hazard threshold levels. The proposed maintenance management method is adaptable and practical; bridge authorities can identify appropriate repair actions and make inspection decisions based on simple threshold comparisons.

Suggested Citation

  • Xu, Gaowei & Azhari, Fae, 2022. "Data-driven optimization of repair schemes and inspection intervals for highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:reensy:v:228:y:2022:i:c:s0951832022004021
    DOI: 10.1016/j.ress.2022.108779
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022004021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Rui & Zhou, Yifan, 2021. "Comparison of three preventive maintenance warranty policies for products deteriorating with age and a time-varying covariate," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Hu, Jiawen & Chen, Piao, 2020. "Predictive maintenance of systems subject to hard failure based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    3. Zhang, Haoyuan & Marsh, D. William R, 2021. "Managing infrastructure asset: Bayesian networks for inspection and maintenance decisions reasoning and planning," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    5. Zheng, Rui & Chen, Bingkun & Gu, Liudong, 2020. "Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Liu, Bin & Liang, Zhenglin & Parlikad, Ajith Kumar & Xie, Min & Kuo, Way, 2017. "Condition-based maintenance for systems with aging and cumulative damage based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 200-209.
    7. Rahman, S. & Karanki, D.R. & Epiney, A. & Wicaksono, D. & Zerkak, O. & Dang, V.N., 2018. "Deterministic sampling for propagating epistemic and aleatory uncertainty in dynamic event tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 62-78.
    8. Ching, Jianye & Leu, Sou-Sen, 2009. "Bayesian updating of reliability of civil infrastructure facilities based on condition-state data and fault-tree model," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1962-1974.
    9. Leila Jafari & Farnoosh Naderkhani & Viliam Makis, 2018. "Joint optimization of maintenance policy and inspection interval for a multi-unit series system using proportional hazards model," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(1), pages 36-48, January.
    10. Calvert, Gareth & Neves, Luis & Andrews, John & Hamer, Matthew, 2020. "Multi-defect modelling of bridge deterioration using truncated inspection records," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    11. Duan, Chaoqun & Makis, Viliam & Deng, Chao, 2020. "A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Yu Fang & Lijun Sun, 2019. "Developing A Semi-Markov Process Model for Bridge Deterioration Prediction in Shanghai," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    13. Andriotis, C.P. & Papakonstantinou, K.G., 2021. "Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Weikai & Chen, Xian, 2023. "Piecewise deterministic Markov process for condition-based imperfect maintenance models," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Rui & Wang, Jingjing & Zhang, Yingzhi, 2023. "A hybrid repair-replacement policy in the proportional hazards model," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1011-1021.
    2. Azar, Kamyar & Hajiakhondi-Meybodi, Zohreh & Naderkhani, Farnoosh, 2022. "Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Zheng, Rui & Zhou, Yifan, 2021. "Comparison of three preventive maintenance warranty policies for products deteriorating with age and a time-varying covariate," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Wang, Jingjing & Miao, Yonghao, 2021. "Optimal preventive maintenance policy of the balanced system under the semi-Markov model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Zheng, Rui & Najafi, Seyedvahid & Zhang, Yingzhi, 2022. "A recursive method for the health assessment of systems using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Najafi, Seyedvahid & Zheng, Rui & Lee, Chi-Guhn, 2021. "An optimal opportunistic maintenance policy for a two-unit series system with general repair using proportional hazards models," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Duan, Chaoqun & Gong, Ting & Yan, Liangwen & Li, Xinmin, 2024. "Bi-level corrected residual life-based maintenance for deteriorating systems under competing risks," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    8. Zheng, Rui & Chen, Bingkun & Gu, Liudong, 2020. "Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Pedersen, Tom Ivar & Liu, Xingheng & Vatn, Jørn, 2023. "Maintenance optimization of a system subject to two-stage degradation, hard failure, and imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Hu, Jiawen & Shen, Jingyuan & Shen, Lijuan, 2020. "Opportunistic maintenance for two-component series systems subject to dependent degradation and shock," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    11. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    12. Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Wang, Naichao & Hu, Jiawen & Ma, Lin & Xiao, Boping & Liao, Haitao, 2020. "Availability Analysis and Preventive Maintenance Planning for Systems with General Time Distributions," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    14. Cheng, Yao & Wei, Yian & Liao, Haitao, 2022. "Optimal sampling-based sequential inspection and maintenance plans for a heterogeneous product with competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    15. Ji, Ziguang & Chen, Yi & Ma, Xiaobing & Cai, Yikun & Yang, Li, 2024. "Hierarchical condition-based maintenance planning for corrosion process considering natural environmental impact," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Zheng, Huiling & Kong, Xuefeng & Xu, Houbao & Yang, Jun, 2021. "Reliability analysis of products based on proportional hazard model with degradation trend and environmental factor," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    18. Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Cheng, Jianda & Cheng, Minghui & Liu, Yan & Wu, Jun & Li, Wei & Frangopol, Dan M., 2024. "Knowledge transfer for adaptive maintenance policy optimization in engineering fleets based on meta-reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    20. uit het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and condition-based production optimization," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:228:y:2022:i:c:s0951832022004021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.