IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i6p214-d1416561.html
   My bibliography  Save this article

Adaptive Framework for Maintenance Scheduling Based on Dynamic Preventive Intervals and Remaining Useful Life Estimation

Author

Listed:
  • Pedro Nunes

    (Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
    Centre for Mechanical Technology and Automation, 3810-193 Aveiro, Portugal)

  • Eugénio Rocha

    (Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
    Center for Research and Development in Mathematics and Applications (CIDMA), 3810-193 Aveiro, Portugal)

  • José Santos

    (Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
    Centre for Mechanical Technology and Automation, 3810-193 Aveiro, Portugal)

Abstract

Data-based prognostic methods exploit sensor data to forecast the remaining useful life (RUL) of industrial settings to optimize the scheduling of maintenance actions. However, implementing sensors may not be cost-effective or practical for all components. Traditional preventive approaches are not based on sensor data; however, they schedule maintenance at equally spaced intervals, which is not a cost-effective approach since the distribution of the time between failures changes with the degradation state of other parts or changes in working conditions. This study introduces a novel framework comprising two maintenance scheduling strategies. In the absence of sensor data, we propose a novel dynamic preventive policy that adjusts intervention intervals based on the most recent failure data. When sensor data are available, a method for RUL prediction, designated k-LSTM-GFT, is enhanced to dynamically account for RUL prediction uncertainty. The results demonstrate that dynamic preventive maintenance can yield cost reductions of up to 51.8% compared to conventional approaches. The predictive approach optimizes the exploitation of RUL, achieving costs that are only 3–5% higher than the minimum cost achievable while ensuring the safety of critical systems since all of the failures are avoided.

Suggested Citation

  • Pedro Nunes & Eugénio Rocha & José Santos, 2024. "Adaptive Framework for Maintenance Scheduling Based on Dynamic Preventive Intervals and Remaining Useful Life Estimation," Future Internet, MDPI, vol. 16(6), pages 1-17, June.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:6:p:214-:d:1416561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/6/214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/6/214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Yue & Zhu, Weihang & Xiang, Yisha & Feng, Qianmei, 2020. "Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    2. Dui, Hongyan & Zhang, Hao & Wu, Shaomin, 2023. "Optimisation of maintenance policies for a deteriorating multi-component system under external shocks," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    3. Hesabi, Hadis & Nourelfath, Mustapha & Hajji, Adnène, 2022. "A deep learning predictive model for selective maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Lee, Juseong & Mitici, Mihaela, 2022. "Multi-objective design of aircraft maintenance using Gaussian process learning and adaptive sampling," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. de Pater, Ingeborg & Reijns, Arthur & Mitici, Mihaela, 2022. "Alarm-based predictive maintenance scheduling for aircraft engines with imperfect Remaining Useful Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Cai, Yue & Teunter, Ruud H. & de Jonge, Bram, 2023. "A data-driven approach for condition-based maintenance optimization," European Journal of Operational Research, Elsevier, vol. 311(2), pages 730-738.
    7. de Pater, Ingeborg & Mitici, Mihaela, 2021. "Predictive maintenance for multi-component systems of repairables with Remaining-Useful-Life prognostics and a limited stock of spare components," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mitici, Mihaela & de Pater, Ingeborg & Barros, Anne & Zeng, Zhiguo, 2023. "Dynamic predictive maintenance for multiple components using data-driven probabilistic RUL prognostics: The case of turbofan engines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Crespo del Castillo, Adolfo & Parlikad, Ajith Kumar, 2024. "Dynamic fleet management: Integrating predictive and preventive maintenance with operation workload balance to minimise cost," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    3. Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Shuto, Susumu & Amemiya, Takashi, 2022. "Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    5. de Pater, Ingeborg & Reijns, Arthur & Mitici, Mihaela, 2022. "Alarm-based predictive maintenance scheduling for aircraft engines with imperfect Remaining Useful Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Zhou, Kai-Li & Cheng, De-Jun & Zhang, Han-Bing & Hu, Zhong-tai & Zhang, Chun-Yan, 2023. "Deep learning-based intelligent multilevel predictive maintenance framework considering comprehensive cost," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Kamariotis, Antonios & Tatsis, Konstantinos & Chatzi, Eleni & Goebel, Kai & Straub, Daniel, 2024. "A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Wang, Yukun & Gao, Weizheng & Li, Xiaopeng & Liu, Yiliu, 2024. "Joint optimization of performance-based contracting, condition-based maintenance and spare parts inventory for degrading production systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Shahil Kumar & Krish Kumar Raj & Maurizio Cirrincione & Giansalvo Cirrincione & Vincenzo Franzitta & Rahul Ranjeev Kumar, 2024. "A Comprehensive Review of Remaining Useful Life Estimation Approaches for Rotating Machinery," Energies, MDPI, vol. 17(22), pages 1-46, November.
    11. Kim, Seokgoo & Choi, Joo-Ho & Kim, Nam Ho, 2022. "Inspection schedule for prognostics with uncertainty management," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    13. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. Li, Xiao Yan & Cheng, De Jun & Fang, Xi Feng & Zhang, Chun Yan & Wang, Yu Feng, 2024. "A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    15. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    16. Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Wei, Shuang & Liu, Weihua & Choi, Tsan-Ming & Dong, Jing-xin & Long, Shangsong, 2024. "The influence of key components and digital technologies on manufacturer's choice of innovation strategy," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1210-1220.
    18. Liu, Wenli & Li, Ang & Fang, Weili & Love, Peter E.D. & Hartmann, Timo & Luo, Hanbin, 2023. "A hybrid data-driven model for geotechnical reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    19. Li, Yaping & Xia, Tangbin & Chen, Zhen & Pan, Ershun, 2023. "Multiple degradation-driven preventive maintenance policy for serial-parallel multi-station manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Cheng, Yao & Wei, Yian & Liao, Haitao, 2022. "Optimal sampling-based sequential inspection and maintenance plans for a heterogeneous product with competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:6:p:214-:d:1416561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.